Skip to main content

Advertisement

Log in

Hybrid machine learning methods combined with computer vision approaches to estimate biophysical parameters of pastures

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

With population growth, the search for technologies that enable improvements in production respecting the environment and people’s health has become an essential point for society. In this context, this paper presents a study based on computer vision techniques and Machine Learning (ML) to extract information from pastures Panicum maximum cv. BRS Zuri to assist in the management and research on pasture conditions, possibilitando a obtenção de informações da. Computer vision approaches are used to extract biophysical parameters from images acquired orthogonally from the canopy of vegetation. The extracted information serves as input for Machine Learning (ML) methods to predict pasture height and biomass. The contribution of this paper is developing a possible new solution compared to traditional methods in the large-scale study of plant biophysical parameters, which can be laborious and costly and sometimes depend on destructive harvesting. For this, three techniques were used: Support Vector Regression, Multi-Layer Perceptron (MLP), and Least Absolute Shrinkage and Selection. In addition, the Differential Evolution technique was used to select the best model. Thirty independent runs of the Differential Evolution technique were performed to assess the approach’s performance. The cross-validation method results show the MLP obtained the best results reaching an average of Coefficient of Determination (R\(^2\)) equal 0.496 to estimate biomass and 0.656 to estimate the pasture height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availibility

Data and materials can be obtained upon request to the authors.

Code availability

Code can be obtained upon request to the authors.

References

  1. Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):52–61. https://doi.org/10.1016/j.tplants.2013.09.008

    Article  Google Scholar 

  2. Arif S, Kumar R, Abbasi S, Mohammadani K, Dev K (2021) Weeds detection and classification using convolutional long-short-term memory. Res Sq. https://doi.org/10.21203/rs.3.rs-219227/v1

    Article  Google Scholar 

  3. Bah MD, Hafiane A, Canals R (2018) Deep learning with unsupervised data labeling for weed detection in line crops in uav images. Remote Sens. https://doi.org/10.3390/rs10111690

    Article  Google Scholar 

  4. Ball KR, Power SA, Brien C, Woodin S, Jewell N, Berger B, Pendall E (2020) High-throughput, image-based phenotyping reveals nutrient-dependent growth facilitation in a grass-legume mixture. PloS One 15(10):e0239673

    Article  Google Scholar 

  5. Bella D, Faivre R, Ruget F, Seguin B, Guerif M, Combal B, Weiss M, Rebella C (2004) Remote sensing capabilities to estimate pasture production in france. Int J Remote Sens 25(23):5359–5372. https://doi.org/10.1080/01431160410001719849

    Article  Google Scholar 

  6. Bora DJ, Gupta AK, Khan FA (2015) Comparing the performance of l* a* b* and hsv color spaces with respect to color image segmentation. arXiv preprint arXiv:1506.01472

  7. Chen Y, Guerschman J, Shendryk Y, Henry D, Harrison MT (2021) Estimating pasture biomass using sentinel-2 imagery and machine learning. Remote Sens 13(4):603. https://doi.org/10.3390/rs13040603

    Article  Google Scholar 

  8. Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126(4):867–887. https://doi.org/10.1007/s00122-013-2066-0

    Article  Google Scholar 

  9. Crain JL, Wei Y, Barker J III, Thompson SM, Alderman PD, Reynolds M, Zhang N, Poland J (2016) Development and deployment of a portable field phenotyping platform. Crop Sci 56(3):965–975. https://doi.org/10.2135/cropsci2015.05.0290

    Article  Google Scholar 

  10. David E, Madec S, Sadeghi-Tehran P, Aasen H, Zheng B, Liu S, Kirchgessner N, Ishikawa G, Nagasawa K, Badhon MA et al. (2020) Global wheat head detection (gwhd) dataset: a large and diverse dataset of high-resolution rgb-labelled images to develop and benchmark wheat head detection methods. Plant Phenomics. https://doi.org/10.34133/2020/3521852

  11. De S, Dey S, Bhattacharyya S (2020) Recent advances in hybrid metaheuristics for data clustering. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  12. Duarte GR, Castro Lemonge ACd, Fonseca LGd, Lima BSLPd (2020) An island model based on stigmergy to solve optimization problems. Nat Comput. https://doi.org/10.1007/s11047-020-09819-x

    Article  Google Scholar 

  13. Epiphanio JC, Gleriani JM, Formaggio AR, Rudorff BF (1996) Índices de vegetação no sensoriamento remoto da cultura do feijão. Pesquisa Agropecuaria Brasileira 31(6):445–454

    Google Scholar 

  14. Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opin Plant Biol 24:93–99. https://doi.org/10.1016/j.pbi.2015.02.006

    Article  Google Scholar 

  15. Ferentinos KP, Barda M, Damer D (2019) An image-based deep learning model for cannabis diseases, nutrient deficiencies and pests identification. In: Moura Oliveira P, Novais P, Reis LP (eds) Progress in artificial intelligence. Springer International Publishing, Cham, pp 134–145

    Chapter  Google Scholar 

  16. Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644. https://doi.org/10.1016/j.tplants.2011.09.005

    Article  Google Scholar 

  17. Gao J, French AP, Pound MP, He Y, Pridmore TP, Pieters JG (2020) Deep convolutional neural networks for image-based convolvulus sepium detection in sugar beet fields. Plant Methods 16(1):29. https://doi.org/10.1186/s13007-020-00570-z

    Article  Google Scholar 

  18. Gée C, Denimal E, Merienne J, Larmure A (2021) Evaluation of weed impact on wheat biomass by combining visible imagery with a plant growth model: towards new non-destructive indicators for weed competition. Precis Agric 22(2):550–568. https://doi.org/10.1007/s11119-020-09776-6

    Article  Google Scholar 

  19. Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Newton, Massachusetts

    Google Scholar 

  20. Gitelson A, Stark R, Grits U, Rundquist D, Kaufman Y, Derry D (2002) Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. Int J Remote Sens 23(13):2537–2562. https://doi.org/10.1080/01431160110107806

    Article  Google Scholar 

  21. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. https://doi.org/10.1126/science.1185383

    Article  Google Scholar 

  22. Goliatt L, Sulaiman SO, Khedher KM, Farooque AA, Yaseen ZM (2021) Estimation of natural streams longitudinal dispersion coefficient using hybrid evolutionary machine learning model. Eng Appl Comput Fluid Mech 15(1):1298–1320

    Google Scholar 

  23. Gong W, razmjooy N (2020) A new optimisation algorithm based on ocm and pcm solution through energy reserve. Int J Ambient Energy, pp 1–14

  24. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804. https://doi.org/10.1109/PROC.1979.11328

    Article  Google Scholar 

  25. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del R’io JF, Wiebe M, Peterson P, G’erard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature 585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  26. Hofmann M (2006) Support vector machines-kernels and the kernel trick. Notes 26(3):1–16

    Google Scholar 

  27. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11(12):855–866. https://doi.org/10.1038/nrg2897

    Article  Google Scholar 

  28. Hunt ER (2011) Remote sensing leaf chlorophyll content using a visible band index. Agronomy journal, 103(no. 4): pp 1090–1099–2011, 103 no.4, https://doi.org/10.2134/agronj2010.0395

  29. Hunt ER Jr, Doraiswamy PC, McMurtrey JE, Daughtry CS, Perry EM, Akhmedov B (2013) A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int J Appl Earth Observ Geoinf 21:103–112. https://doi.org/10.1016/j.jag.2012.07.020

    Article  Google Scholar 

  30. Jayasinghe C, Badenhorst P, Jacobs J, Spangenberg G, Smith K (2020) High-throughput ground cover classification of perennial ryegrass (lolium perenne l.) for the estimation of persistence in pasture breeding. Agronomy 10(8):1206

    Article  Google Scholar 

  31. Khan Z, Rahimi-Eichi V, Haefele S, Garnett T, Miklavcic SJ (2018) Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging. Plant Methods 14(1):1–11. https://doi.org/10.1186/s13007-018-0287-6

    Article  Google Scholar 

  32. Khanduja N, Bhushan B (2021) Recent advances and application of metaheuristic algorithms: A survey (2014–2020). Algorithms and Applications, Metaheuristic and Evolutionary Computation, pp 207–228

  33. Kirchgessner N, Liebisch F, Yu K, Pfeifer J, Friedli M, Hund A, Walter A (2017) The eth field phenotyping platform fip: a cable-suspended multi-sensor system. Funct Plant Biol 44(1):154–168. https://doi.org/10.1071/FP16165

    Article  Google Scholar 

  34. Liu Y, Pu H, Sun DW (2021) Efficient extraction of deep image features using convolutional neural network (cnn) for applications in detecting and analysing complex food matrices. Trends Food Sci Technol 113:193–204

    Article  Google Scholar 

  35. Louhaichi M, Borman MM, Johnson DE (2001) Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int 16(1):65–70. https://doi.org/10.1080/10106040108542184

    Article  Google Scholar 

  36. Macedo MCM, Kichel AN, Zimmer AH (2000) Degradação e alternativas de recuperação e renovação de pastagens. Embrapa Gado de Corte-Comunicado Técnico (INFOTECA-E) https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/324215

  37. Marques Filho O, Neto HV (1999) Processamento digital de imagens. Brasport

  38. Wes McKinney (2010) Data Structures for Statistical Computing in Python. In: Stéfan van der Walt, Jarrod Millman (eds) Proceedings of the 9th Python in science conference, pp 56 – 61, https://doi.org/10.25080/Majora-92bf1922-00a

  39. Michez A, Lejeune P, Bauwens S, Herinaina AAL, Blaise Y, Castro Muñoz E, Lebeau F, Bindelle J (2019) Mapping and monitoring of biomass and grazing in pasture with an unmanned aerial system. Remote Sens 11(5):473. https://doi.org/10.3390/rs11050473

    Article  Google Scholar 

  40. Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114(4):358–371. https://doi.org/10.1016/j.biosystemseng.2012.08.009

    Article  Google Scholar 

  41. Nandhini N, Bhavani R (2020) Feature extraction for diseased leaf image classification using machine learning. In: 2020 International conference on computer communication and informatics (ICCCI), IEEE, pp 1–4

  42. Nguyen GN, Maharjan P, Maphosa L, Vakani J, Thoday-Kennedy E, Kant S (2019) A robust automated image-based phenotyping method for rapid vegetative screening of wheat germplasm for nitrogen use efficiency. Front Plant Sci 10:1372. https://doi.org/10.3389/fpls.2019.01372

    Article  Google Scholar 

  43. Panahi M, Gayen A, Pourghasemi HR, Rezaie F, Lee S (2020) Spatial prediction of landslide susceptibility using hybrid support vector regression (svr) and the adaptive neuro-fuzzy inference system (anfis) with various metaheuristic algorithms. Sci Total Environ 741:139937

    Article  Google Scholar 

  44. Pearlstein L, Kim M, Seto W (2016) Convolutional neural network application to plant detection, based on synthetic imagery. In: 2016 IEEE applied imagery pattern recognition workshop (AIPR), pp 1–4, https://doi.org/10.1109/AIPR.2016.8010596

  45. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  46. Pi W, Du J, Bi Y, Gao X, Zhu X (2021) 3d-cnn based uav hyperspectral imagery for grassland degradation indicator ground object classification research. Ecol Inform 62:101278. https://doi.org/10.1016/j.ecoinf.2021.101278

    Article  Google Scholar 

  47. Połap D (2019) Analysis of skin marks through the use of intelligent things. IEEE Access 7:149355–149363

    Article  Google Scholar 

  48. Połap D, Włodarczyk-Sielicka M, Wawrzyniak N (2021) Automatic ship classification for a riverside monitoring system using a cascade of artificial intelligence techniques including penalties and rewards. ISA transactions

  49. Raschka S (2015) Python machine learning. Packt publishing ltd, Birmingham

    Google Scholar 

  50. Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by fifa world cup competitions: theory and its application in pid designing for avr system. J Control Autom Elect Syst 27(4):419–440

    Article  Google Scholar 

  51. Razmjooy N, Estrela VV, Loschi HJ, Fanfan W (2019) A comprehensive survey of new meta-heuristic algorithms. Recent advances in hybrid metaheuristics for data clustering. Wiley Publishing, Hoboken

    Google Scholar 

  52. Razmjooy N, Ashourian M, Foroozandeh Z (2020) Metaheuristics and optimization in computer and electrical engineering. Springer, Berlin

    Google Scholar 

  53. Razmjooy N, Estrela VV, Loschi HJ (2020) Entropy-based breast cancer detection in digital mammograms using world cup optimization algorithm. Int J Swarm Intell Res (IJSIR) 11(3):1–18

    Article  Google Scholar 

  54. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386. https://doi.org/10.1037/h0042519

    Article  Google Scholar 

  55. Rumelhart DE, McClelland JL, Group PR, et al. (1988) Parallel distributed processing, vol 1. IEEE Massachusetts

  56. Sankaran S, Espinoza CZ, Hinojosa L, Ma X, Murphy K (2019) High-throughput field phenotyping to assess irrigation treatment effects in quinoa. Agrosyst Geosci Environ 2(1):1–7. https://doi.org/10.2134/age2018.12.0063

    Article  Google Scholar 

  57. Saporetti CM, Goliatt L, Pereira E (2021) Neural network boosted with differential evolution for lithology identification based on well logs information. Earth Sci Inform 14(1):133–140

    Article  Google Scholar 

  58. Sharpe SM, Schumann AW, Yu J, Boyd NS (2020) Vegetation detection and discrimination within vegetable plasticulture row-middles using a convolutional neural network. Precis Agric 21(2):264–277. https://doi.org/10.1007/s11119-019-09666-6

    Article  Google Scholar 

  59. Smith LN, Byrne A, Hansen MF, Zhang W, Smith ML (2019) Weed classification in grasslands using convolutional neural networks. In: Applications of Machine Learning, International Society for Optics and Photonics, vol 11139, p 1113919, https://doi.org/10.1117/12.2530092

  60. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  61. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Stat Soc Series B (Methodol) 58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  MathSciNet  MATH  Google Scholar 

  62. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. https://doi.org/10.1038/nature01014

    Article  Google Scholar 

  63. ...Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, Scipy 10 Contributors (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  64. Wan L, Zhang J, Dong X, Du X, Zhu J, Sun D, Liu Y, He Y, Cen H (2021) Unmanned aerial vehicle-based field phenotyping of crop biomass using growth traits retrieved from prosail model. Comput Electron Agric 187:106304

    Article  Google Scholar 

  65. Wang J, Badenhorst P, Phelan A, Pembleton L, Shi F, Cogan N, Spangenberg G, Smith K (2019) Using sensors and unmanned aircraft systems for high-throughput phenotyping of biomass in perennial ryegrass breeding trials. Front Plant Sci 10:1381. https://doi.org/10.3389/fpls.2019.01381

    Article  Google Scholar 

  66. Yang Z, Willis P, Mueller R (2008) Impact of band-ratio enhanced awifs image to crop classification accuracy. Proc Pecora 17:1–11

    Google Scholar 

  67. Zeng L, Chen C (2018) Using remote sensing to estimate forage biomass and nutrient contents at different growth stages. Biomass Bioenergy 115:74–81

    Article  Google Scholar 

  68. Zhang G, Xiao C, Razmjooy N (2020) Optimal parameter extraction of pem fuel cells by meta-heuristics. Int J Ambient Energy, pp 1–10

Download references

Funding

The authors acknowledge the Brazilian funding agencies CNPq (grants 429639/2016 and 401796/2021-3), FAPEMIG (APQ-00334/18), Embrapa Dairy Cattle and CAPES - Finance Code 001 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Goliatt.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, V.R., Hott, M.C., Andrade, R.G. et al. Hybrid machine learning methods combined with computer vision approaches to estimate biophysical parameters of pastures. Evol. Intel. 16, 1271–1284 (2023). https://doi.org/10.1007/s12065-022-00736-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-022-00736-9

Keywords

Navigation