Skip to main content

Advertisement

Log in

Train RBF networks with a hybrid genetic algorithm

  • Short Note
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

RBF neural networks are well established tools for classification and regression problems. This article adapts a hybrid genetic algorithm to estimate the main parameters of the network. The proposed method utilizes a genetic algorithm in a conjunction with a local search procedure and a termination rule. The method is tested against other RBF variants on a series of well-known problems from the relevant literature and the results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    MATH  Google Scholar 

  2. Rokach L, Maimon O (2005) Decision trees. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, Boston, MA

    MATH  Google Scholar 

  3. Huang XL, Ma X, Hu F (2018) Editorial: machine learning and intelligent communications. Mobile Netw Appl 23:68–70

    Article  Google Scholar 

  4. Chen ZY, Kuo RJ (2019) Combining SOM and evolutionary computation algorithms for RBF neural network training. J Intell Manuf 30:1137–1154

    Article  Google Scholar 

  5. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3:246–257

    Article  Google Scholar 

  6. Mai-Duy N, Tran-Cong T (2001) Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw 14:185–199

    Article  MATH  Google Scholar 

  7. Mai-Duy N (2005) Solving high order ordinary differential equations with radial basis function networks. Int J Numer Methods Eng 62:824–852

    Article  MATH  Google Scholar 

  8. Laoudias C, Kemppi P, Panayiotou CG (2009) Localization using radial basis function networks and signal strength fingerprints in WLAN. In: GLOBECOM 2009–2009 IEEE global telecommunications conference, Honolulu, HI, 2009, pp 1–6

  9. Chen S, Mulgrew B, Grant PM (1993) A clustering technique for digital communications channel equalization using radial basis function networks. IEEE Trans Neural Netw 4:570–590

    Article  Google Scholar 

  10. Teng P (2018) Machine-learning quantum mechanics: solving quantum mechanics problems using radial basis function networks. Phys Rev E 98:033305

    Article  Google Scholar 

  11. Jovanović R, Sretenovic A (2017) Ensemble of radial basis neural networks with K-means clustering for heating energy consumption prediction. FME Trans 45:51–57

    Article  Google Scholar 

  12. Wan C, de Harrington PB (1999) Self-configuring radial basis function neural networks for chemical pattern recognition. J Chem Inf Comput Sci 39:1049–1056

    Article  Google Scholar 

  13. Yao X, Zhang X, Zhang R, Liu M, Zhide H, Fan B (2001) Prediction of enthalpy of alkanes by the use of radial basis function neural networks. Comput Chem 25:475–482

    Article  Google Scholar 

  14. Momoh JA, Reddy SS (2014) Economic combined, dispatch emission, using radial basis function. In: IEEE PES general meeting|conference & exposition. National Harbor, MD, 2014, pp 1–5. https://doi.org/10.1109/PESGM.2014.6939506

  15. Guo J-J, Luh PB (2003) Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction. IEEE Trans Power Syst 18:665–672

    Article  Google Scholar 

  16. Yu H, Xie T, Paszczynski S, Wilamowski BM (2011) Advantages of radial basis function networks for dynamic system design. IEEE Trans Ind Electron 58:5438–5450

    Article  Google Scholar 

  17. Arenas MG, Parras-Gutiérrez E, Rivas VM, Castillo PA, Del Jesus MJ, Merelo JJ (2009) Parallelizing the design of radial basis function neural networks by means of evolutionary meta-algorithms. In: Cabestany J, Sandoval F, Prieto A, Corchado JM (eds) Bio-inspired systems: computational and ambient intelligence. IWANN. Lecture Notes in Computer Science, vol 5517. Springer, Berlin

    Google Scholar 

  18. Kuncheva LI (1997) Initializing of an RBF network by a genetic algorithm. Neurocomputing 14:273–288

    Article  Google Scholar 

  19. Kubat M (1998) Decision trees can initialize radial-basis function networks. IEEE Trans Neural Netw 9:813–821

    Article  Google Scholar 

  20. Franco DGB, Steiner MTA (2017) New strategies for initialization and training of radial basis function neural networks. IEEE Lat Am Trans 15:1182–1188

    Article  Google Scholar 

  21. Ricci E, Perfetti R (2006) Improved pruning strategy for radial basis function networks with dynamic decay adjustment. Neurocomputing 69:1728–1732

    Article  Google Scholar 

  22. Bortman M, Aladjem M (2009) A growing and pruning method for radial basis function networks. IEEE Trans Neural Netw 20:1039–1045

    Article  Google Scholar 

  23. Chen JY, Qin Z, Jia J (2008) A PSO-based subtractive clustering technique for designing RBF Neural networks. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence), Hong Kong, pp 2047–2052

  24. Esmaeili A, Mozayani N (2009) Adjusting the parameters of radial basis function networks using Particle Swarm Optimization. In: 2009 IEEE international conference on computational intelligence for measurement systems and applications, Hong Kong, pp 179–181

  25. O’Hora B, Perera J, Brabazon A (2006) Designing radial basis function networks for classification using differential evolution. In: The 2006 IEEE international joint conference on neural network proceedings, Vancouver, BC, pp 2932–2937

  26. Yu B, He X (2006) Training radial basis function networks with differential evolution. In: Proceedings of IEEE international conference on granular computing, pp 934–941

  27. Ali MM, Törn A, Viitanen S (1997) A numerical comparison of some modified controlled random search algorithms. J Global Optim 11:377–385

    Article  MATH  Google Scholar 

  28. Ingber L (1989) Very fast simulated re-annealing. Math Comput Model 12:967–973

    Article  MATH  Google Scholar 

  29. Poli R, Kennedy JK, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1:33–57

    Article  Google Scholar 

  30. Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Reading, MA

    MATH  Google Scholar 

  31. Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput 14:347–361

    Article  Google Scholar 

  32. Haupt RL (1995) An introduction to genetic algorithms for electromagnetics. Antennas Propag Mag 37:7–15

    Article  Google Scholar 

  33. Savic DA, Walters GA (1997) Genetic algorithms for least-cost design of water distribution networks. J Water Resour Plan Manag 123:67–77

    Article  Google Scholar 

  34. Sarimveis H, Alexandridis A, Mazarakis S, Bafas G (2004) A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms. Comput Chem Eng 28:209–217

    Article  Google Scholar 

  35. Ding S, Xu L, Su C et al (2012) An optimizing method of RBF neural network based on genetic algorithm. Neural Comput Appl 21:333–336

    Article  Google Scholar 

  36. Jia W, Zhao D, Shen T, Su C, Hu C, Zhao Y (2014) A new optimized GARBF neural network algorithm. Comput Intell Neurosci, Article ID 982045, 6

  37. Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl Math Comput 203:598–607

    MATH  Google Scholar 

  38. Powell MJD (1989) A tolerant algorithm for linearly constrained optimization calculations. Math Program 45:547–566

    Article  MATH  Google Scholar 

  39. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, no 14, pp 281–297

  40. Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R (2001) Parallel programming in OpenMP. Morgan Kaufmann Publishers Inc., Burlington

    Google Scholar 

  41. Hayes-Roth B, Hayes-Roth F (1977) Concept learning and the recognition and classification of exemplars. J Verbal Learn Verbal Behav 16:321–338

    Article  MATH  Google Scholar 

  42. Giannakeas N, Tsipouras MG, Tzallas AT, Kyriakidi K, Tsianou ZE, Manousou P, Hall A, Karvounis EC, Tsianos V, Tsianos E (2015) A clustering based method for collagen proportional area extraction in liver biopsy images. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, art. no. 7319047, pp 3097–3100

  43. Quinlan JR, Compton PJ, Horn KA, Lazurus L (1986) Inductive knowledge acquisition: a case study. In: Proceedings of the second Australian conference on applications of expert systems. Sydney, Australia

  44. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):8 (Article ID 061907)

    Article  Google Scholar 

  45. Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci 2007:13. https://doi.org/10.1155/2007/80510 (Article ID 80510)

    Article  Google Scholar 

  46. Brooks TF, Pope DS, Marcolini AM (1989) Airfoil self-noise and prediction. Technical report, NASA RP-1218

  47. Cheng Yeh I (1998) Modeling of strength of high performance concrete using artificial neural networks. Cem Concr Res 28:1797–1808

    Article  Google Scholar 

  48. Harrison D, Rubinfeld DL (1978) Hedonic prices and the demand for clean AI. J Environ Econ Manag 5:81–102

    Article  MATH  Google Scholar 

  49. Simonoff JS (1996) Smoothing methods in statistics. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  50. Mackowiak PA, Wasserman SS, Levine MM (1992) A critical appraisal of 98.6 F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. J Am Med Assoc 268:1578–1580

    Article  Google Scholar 

Download references

Acknowledgements

The experiments of this research work was performed at the high performance computing system established at Knowledge and Intelligent Computing Lab-oratory, Dept of Informatics and Telecommunications, University of Ioannina, acquired with the project “Educational Laboratory equipment of TEI of Epirus” with MIS 5007094 funded by the Operational Programme “Epirus” 2014–2020, by ERDF and national finds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis G. Tsoulos.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoulos, I.G., Anastasopoulos, N., Ntritsos, G. et al. Train RBF networks with a hybrid genetic algorithm. Evol. Intel. 16, 375–381 (2023). https://doi.org/10.1007/s12065-021-00654-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00654-2

Keywords

Navigation