Skip to main content

Advertisement

Log in

Combining SOM and evolutionary computation algorithms for RBF neural network training

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper intends to enhance the learning performance of radial basis function neural network (RBFnn) using self-organizing map (SOM) neural network (SOMnn). In addition, the particle swarm optimization (PSO) and genetic algorithm (GA) based (PG) algorithm is employed to train RBFnn for function approximation. The proposed mix of SOMnn with PG (MSPG) algorithm combines the automatically clustering ability of SOMnn and the PG algorithm. The simulation results revealed that SOMnn, PSO and GA approaches can be combined ingeniously and redeveloped into a hybrid algorithm which aims for obtaining a more accurate learning performance among relevant algorithms. On the other hand, method evaluation results for four continuous test function experiments and the demand estimation case showed that the MSPG algorithm outperforms other algorithms and the Box–Jenkins models in accuracy. Additionally, the proposed MSPG algorithm is allowed to be embedded into business’ enterprise resource planning system in different industries to provide suppliers, resellers or retailers in the supply chain more accurate demand information for evaluation and so to lower the inventory cost. Next, it can be further applied to the intelligent manufacturing system to cope with real situation in the industry to meet the need of customization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Google Scholar 

  • Amraee, T., Ranjbar, A. M., Mozafari, B., & Sadati, N. (2007). An enhanced under-voltage load-shedding scheme to provide voltage stability. Electric Power Systems Research, 77, 1038–1046.

    Google Scholar 

  • Anbazhagan, S., & Kumarappan, N. (2014). Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT. Energy Conversion and Management, 78, 711–719.

    Google Scholar 

  • Ayala, H. V. H., & Coelho, L. D. S. (2016). Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks. Mechanical Systems and Signal Processing, 68–69, 378–392.

    Google Scholar 

  • Azadeh, A., & Tarverdian, S. (2007). Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption. Energy Policy, 35, 5229–5241.

    Google Scholar 

  • Babu, C. N., & Reddy, B. E. (2014). A moving-average-filter-based hybrid ARIMA–ANN model for forecasting time series data. Applied Soft Computing, 23, 27–38.

    Google Scholar 

  • Bagheri, M., Mirbagheri, S. A., Bagheri, Z., & Kamarkhani, A. M. (2015). Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks–genetic algorithm approach. Process Safety and Environmental Protection, 95, 12–25.

    Google Scholar 

  • Barra, T. V., Bezerra, G. B., & de Castro, L. N. (2006). An immunological density-preserving approach to the synthesis of RBF neural networks for classification. In International joint conference on neural networks (pp. 929–935).

  • Box, G. E. P., & Jenkins, G. (1976). Time series analysis, forecasting and control. San Francisco: Holden-Day.

    Google Scholar 

  • Chan, K. Y., Dillon, T. S., Singh, J. S., & Chang, E. (2012). Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm. IEEE Transaction on Intelligent Transportation Systems, 13(2), 644–654.

    Google Scholar 

  • Chang, P. C., & Liao, T. W. (2006). Combining SOM and fuzzy rule base for flow time prediction in semiconductor manufacturing factory. Applied Soft Computing, 6, 198–206.

    Google Scholar 

  • Chen, S., Cowan, C. F. N., & Grant, P. M. (1991). Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transaction on Neural Networks, 2(2), 302–309.

    Google Scholar 

  • Chen, S., Wu, Y., & Luk, B. L. (1999). Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Transactions on Neural Networks, 10(5), 1239–1243.

    Google Scholar 

  • Chiroma, H., Abdulkareem, S., & Herawan, T. (2015). Evolutionary neural network model for West Texas Intermediate crude oil price prediction. Applied Energy, 142, 266–273.

    Google Scholar 

  • DelaOssa, L., Gamez, J. A., & Puetra, J. M. (2006). Learning weighted linguistic fuzzy rules with estimation of distribution algorithms. In IEEE congress on evolutionary computation (pp. 900–907). Vancouver, BC: Sheraton Vancouver Wall Centre Hotel.

  • Deng, W., Chen, R., Gao, J., Song, Y., & Xu, J. (2012). A novel parallel hybrid intelligence optimization algorithm for a function approximation problem. Computers and Mathematics with Applications, 63, 325–336.

    Google Scholar 

  • Denker, J. S. (1986). Neural network models of learning and adaptation. Physica D, 22, 216–232.

    Google Scholar 

  • Dey, S., Bhattacharyya, S., & Maulik, U. (2014). Quantum inspired genetic algorithm and particle swarm optimization using chaotic map model based interference for gray level image thresholding. Swarm and Evolutionary Computation, 15, 38–57.

    Google Scholar 

  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ration statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057–1072.

    Google Scholar 

  • Du, W., Leung, S. Y. S., & Kwong, C. K. (2015). A multiobjective optimization-based neural network model for short-term replenishment forecasting in fashion industry. Neurocomputing, 151, 342–353.

    Google Scholar 

  • Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: Wiley.

    Google Scholar 

  • Duman, S., Yorukeren, N., & Altas, I. H. (2015). A novel modified hybrid PSOGSA based on fuzzy logic for non-convex economic dispatch problem with value-point effect. Electrical Power and Energy Systems, 64, 121–135.

    Google Scholar 

  • Engle, R. F., Robert, F., & Yoo, B. S. (1987). Forecasting and testing in cointegrated systems. Journal of Econometrics, 35, 588–589.

    Google Scholar 

  • Er, M. J., Li, Z., Cai, H., & Chen, Q. (2005). Adaptive noise cancellation using enhanced dynamic fuzzy neural network. IEEE Transactions on Fuzzy Systems, 13(3), 331–342.

    Google Scholar 

  • Feng, H. M. (2006). Self-generation RBFNs using evolutional PSO learning. Neurocomputing, 70, 241–251.

    Google Scholar 

  • Galvez, A., & Iglesias, A. (2013). A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing. Applied Soft Computing, 13, 1491–1504.

    Google Scholar 

  • Garcia-Gonzalo, E., & Fernandez-Martinez, J. L. (2012). A brief historical review of particle swarm optimization (PSO). Journal of Bioinformatics and Intelligent Control, 1(1), 3–16.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization & machine learning. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Golub, G. H., & Loan, C. F. V. (1996). Matrix computations (3rd ed.). Baltimore, MD: Johns Hopkins Univ. Press.

    Google Scholar 

  • Hadavandi, E., Shavandi, H., Ghanbari, A., & Naghneh, S. A. (2012). Developing a hybrid artificial intelligence model for outpatient visits forecasting in hospitals. Applied Soft Computing, 12, 700–711.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: MIT Press. Reprinted in 1998.

    Google Scholar 

  • Hsu, S. H., Hsieh, J. P. A., Chih, T. C., & Hsu, K. C. (2009). A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression. Expert Systems with Applications, 36, 7947–7951.

    Google Scholar 

  • Huang, C. M., & Wang, F. L. (2007). An RBF network with OLS and EPSO algorithms for real-time power dispatch. IEEE Transaction on Power Systems, 22(1), 96–104.

    Google Scholar 

  • Jaipuria, S., & Mahapatra, S. S. (2014). An improved demand forecasting method to reduce bullwhip effect in supply chains. Expert Systems with Applications, 41, 2395–2408.

    Google Scholar 

  • Jin, D., Wang, P., Bai, Z., Wang, X., Peng, H., Qi, R., et al. (2011). Analysis of bacterial community in bulking sludge using culture-dependent and-independent approaches. Journal of Environmental Sciences, 23, 1880–1887.

    Google Scholar 

  • Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.

    Google Scholar 

  • Katherasan, D., Elias, J. V., Sathiya, P., & Haq, A. N. (2014). Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. Journal of Intelligent Manufacturing, 25, 67–76.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks (pp. 1942–1948). Perth: IEEE Service Center.

  • Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Ketabchi, H., & Ataie-Ashtiani, B. (2015). Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges. Journal of Hydrology, 520, 193–213.

    Google Scholar 

  • Kmenta, J. (1986). Elements of econometrics (2nd ed.). New York: Macmillan Publishing Co.

    Google Scholar 

  • Kohonen, T. (1987). Self-organizing and associative memory (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Kohonen, T. (1990). The self-organizing map. Proceedings of IEEE, 78(9), 1464–1480.

    Google Scholar 

  • Kuo, R. J., & Han, Y. S. (2011). A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem: A case study on supply chain mode. Applied Mathematical Modelling, 35(8), 3905–3917.

    Google Scholar 

  • Kuo, R. J., Syu, Y. J., Chen, Z. Y., & Tien, F. C. (2012). Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Information Sciences, 195, 124–140.

    Google Scholar 

  • Kurt, I., Ture, M., & Kurum, A. T. (2008). Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Systems with Applications, 34, 366–374.

    Google Scholar 

  • Kuzmanovski, I., Lazova, S. D., & Aleksovska, S. (2007). Classification of perovskites with supervised self-organizing maps. Analytica Chimica Acta, 595, 182–189.

    Google Scholar 

  • Lee, Z. J. (2008). A novel hybrid algorithm for function approximation. Expert Systems with Applications, 34, 384–390.

    Google Scholar 

  • Lin, C. F., Wu, C. C., Yang, P. H., & Kuo, T. Y. (2009). Application of Taguchi method in light-emitting diode backlight design for wide color gamut displays. Journal of Display Technology, 5(8), 323–330.

    Google Scholar 

  • Lin, G., & Wu, M. (2009). A hybrid neural network model for typhoon-rainfall forecasting. Journal of Hydrology, 375, 450–458.

    Google Scholar 

  • Lin, G. F., & Wu, M. C. (2011). An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model. Journal of Hydrology, 405, 439–450.

    Google Scholar 

  • Looney, C. G. (1996). Advances in feedforward neural networks: Demystifying knowledge acquiring black boxes. IEEE Transactions on Knowledge and Data Engineering, 8(2), 211–226.

    Google Scholar 

  • Lopez, M., Valero, S., Senabre, C., Aparicio, J., & Gabaldon, A. (2012). Application of SOM neural networks to short-term load forecasting: The Spanish electricity market case study. Electric Power Systems Research, 91, 18–27.

    Google Scholar 

  • Lu, J., Hu, H., & Bai, Y. (2015). Generalized radial basis function neural network based on an improved dynamic particle swarm optimization and AdaBoost algorithm. Neurocomputing, 152, 305–315.

    Google Scholar 

  • Mezura-Montes, E., & CoelloCoello, C. A. (2011). Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm Evol. Comput., 1(22), 173–194.

    Google Scholar 

  • Olabi, A. G. (2008). Using Taguchi method to optimize welding pool of dissimilar laser-welded components. Optics & Laser Technology, 40, 379–388.

    Google Scholar 

  • Ozturk, C., Hancer, E., & Karaboga, D. (2015). A novel binary artificial bee colony algorithm based on genetic operators. Information Sciences, 297, 154–170.

    Google Scholar 

  • Qasem, S. N., Shamsuddin, S. M., & Zain, A. M. (2012). Multi-objective hybrid evolutionary algorithms for radial basis function neural network design. Knowledge-Based Systems, 27, 475–497.

    Google Scholar 

  • Qiu, X., & Lau, H. Y. K. (2014). An AIS-based hybrid algorithm for static job shop scheduling problem. Journal of Intelligent Manufacturing, 25, 489–503.

    Google Scholar 

  • Rezaee-Jordehi, A., & Jasni, J. (2013). Parameter selection in particle swarm optimisation: A survey. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 527–542.

    Google Scholar 

  • Rocha, I. B. C. M., Parente, E, Jr., & Melo, A. M. C. (2014). A hybrid shared/distributed memory parallel genetic algorithm for optimization of laminate composites. Composite Structures, 107, 288–297.

    Google Scholar 

  • Rumbell, T., Denham, S. L., & Wennekers, T. (2014). A spiking self-organizing map combining STDP, oscillations, and continuous learning. IEEE Transaction on Neural, Networks and Learning Systems, 25(5), 894–907.

    Google Scholar 

  • Sarimveis, H., Alexandridis, A., Mazarakis, S., & Bafas, G. (2004). A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms. Computers and Chemical Engineering, 28, 209–217.

    Google Scholar 

  • Sattari, M. T., Yurekli, K., & Pal, M. (2012). Performance evaluation of artificial neural network approaches in forecasting reservoir inflow. Applied Mathematical Modelling, 36, 2649–2657.

    Google Scholar 

  • Savsani, P., Jhala, R. L., & Savsani, V. (2014). Effect of hybridizing biogeography-based optimization (BBO) technique with artificial immune algorithm (AIA) and ant colony optimization (ACO). Applied Soft Computing, 21, 542–553.

    Google Scholar 

  • Shafie-khah, M., Moghaddam, M. P., & Sheikh-El-Eslami, M. K. (2011). Price forecasting of day-ahead electricity markets using a hybrid forecast method. Energy Conversion and Management, 52, 2165–2169.

    Google Scholar 

  • Shelokar, P. S., Siarry, P., Jayaraman, V. K., & Kulkarni, B. D. (2007). Particle swarm and colony algorithms hybridized for improved continuous optimization. Applied Mathematics and Computation, 188, 129–142.

    Google Scholar 

  • Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Evolutionary programming VII: Proceedings of EP98 (pp. 591–600). New York: Springer.

  • Syswerda, G. (1989). Uniform crossover in genetic algorithms. In J. D. Sehaffer (Ed.), Proceedings of the third international conference on genetic algorithms and their applications (pp. 2–9). San Mateo: CA Morgan Kaufmann Publishers.

    Google Scholar 

  • Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Taguchi’s quality engineering handbook. Hoboken, NJ: Wiley.

    Google Scholar 

  • Taguchi, G., & Yokoyama, T. (1993). Taguchi methods: Design of experiments. Dearbon, MI: ASI Press.

    Google Scholar 

  • Tsai, J. T., Chou, J. H., & Liu, T. K. (2006). Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Transactions on Neural Networks, 17(1), 69–80.

    Google Scholar 

  • Tsekouras, G. E., & Tsimikas, J. (2013). On training RBF neural networks using input–output fuzzy clustering and particle swarm optimization. Fuzzy Sets and Systems, 221, 65–89.

    Google Scholar 

  • Vitorino, L. N., Ribeiro, S. F., & Bastos-Filho, C. J. A. (2015). A mechanism based on artificial bee colony to generate diversity in particle swarm optimization. Neurocomputing, 148, 39–45.

    Google Scholar 

  • Wang, D., & Lu, W. Z. (2006). Forecasting of ozone level in time series using MLP model with a novel hybrid training algorithm. Atmospheric Environment, 40, 913–924.

    Google Scholar 

  • Wang, W. M., Peng, X., Nhu, G. N., Hu, J., & Peng, Y. H. (2014). Dynamic representation of fuzzy knowledge based on fuzzy petri net and genetic-particle swarm optimization. Expert Systems with Applications, 41, 1369–1376.

    Google Scholar 

  • Whitehead, B. A., & Choate, T. D. (1996). Cooperative–competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Transaction on Neural Networks, 7(4), 869–880.

    Google Scholar 

  • Wu, J. D., & Liu, J. C. (2012). A forecasting system for car fuel consumption using a radial basis function neural network. Expert Systems with Applications, 39, 1883–1888.

    Google Scholar 

  • Xu, R., Venayagamoorthy, G. K., & Wunsch, D. C. (2007). Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Networks, 20, 917–927.

    Google Scholar 

  • Yadav, V., & Srinivasan, D. (2011). A SOM-based hybrid linear-neural model for short-term load forecasting. Neurocomputing, 74, 2874–2885.

    Google Scholar 

  • Yousefi, M., Enayatifar, R., & Darus, A. N. (2012). Optimal design of plate-fin heat exchangers by a hybrid evolutionary algorithm. International Communications in Heat and Mass Transfer, 39, 258–263.

    Google Scholar 

  • Yu, L., Wang, S., Lai, K. K., & Wen, F. (2010). A multiscale neural network learning paradigm for financial crisis forecasting. Neurocomputing, 73, 716–725.

    Google Scholar 

  • Yu, S., Wang, K., & Wei, Y. M. (2015a). A hybrid self-adaptive particle swarm optimization-genetic algorithm-radial basis function model for annual electricity demand prediction. Energy Conversion & Management, 91, 176–185.

    Google Scholar 

  • Yu, S., Wei, Y. M., & Wang, K. (2012a). A PSO–GA optimal model to estimate primary energy demand of China. Energy Policy, 42, 329–340.

    Google Scholar 

  • Yu, S., Wei, Y. M., & Wang, K. (2012b). China’s primary energy demands in 2020: Predictions from an MPSO–RBF estimation model. Energy Conversion & Management, 61, 59–66.

  • Yu, S., Zhang, J., Zheng, S., & Sun, H. (2015b). Provincial carbon intensity abatement potential estimation in China: A PSO-GA-optimized multi-factor environmental learning curve method. Energy Policy, 77, 46–55.

    Google Scholar 

  • Yu, S., Zhu, K., & Gao, S. (2009). A hybrid MPSO-BP structure adaptive algorithm for RBFNs. Neural Computing and Applications, 18, 769–779.

    Google Scholar 

  • Zhang, Z., Su, S., Lin, Y., Cheng, X., Shuang, K., & Xu, P. (2015a). Adaptive multi-objective artificial immune system based virtual network embedding. Journal of Network and Computer Applications, 53, 140–155.

    Google Scholar 

  • Zhang, J. L., Zhang, Y. J., & Zhang, L. (2015b). A novel hybrid method for crude oil forecasting. Energy Economics, 49, 649–659.

    Google Scholar 

  • Zou, H. F., Xia, G. P., Yang, F. T., & Wang, H. Y. (2007). An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing, 70, 2913–2923.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yao Chen.

Appendix: Four continuous test functions (Shelokar et al. 2007; Whitehead and Choate 1996)

Appendix: Four continuous test functions (Shelokar et al. 2007; Whitehead and Choate 1996)

The first experiment, Rosenbrock function (Shelokar et al. 2007) is expressed as follows:

$$\begin{aligned} RS(x_j ,x_{j+1} )=\sum _{j=1}^{n-1} {[100(x_j^2 -x_{j+1} )^{2}+(x_j -1)^{2}],n=2}\nonumber \\ \end{aligned}$$
(15)
  1. (a)

    search domain: \(-5\leqq x_j \leqq 5, j = 1\);

  2. (b)

    one global minimum: \((x_1 ,x_2 ) = (1, 1); RS(x_1 ,x_2)=0\).

In the second experiment, Griewank function (Shelokar et al. 2007) is expressed as follows:

$$\begin{aligned} GR(x_j ,x_{j+1} )=\sum _{j=1}^n {\frac{x_j^2 }{4000}-\prod _{j=1}^n {\cos \left( \frac{x_{j+1} }{\sqrt{j+1}}\right) } +1} ,n=1\nonumber \\ \end{aligned}$$
(16)
  1. (a)

    search domain: \(-300 \leqq x_j \leqq 600, j\)= 1;

  2. (b)

    one global minimum: (\(x_1 ,x_2 )\) = (0, 0); \(GR(x_1 ,x_2 )\)= 0.

In the third experiment, B2 function (Shelokar et al. 2007) is expressed as follows:

$$\begin{aligned} B2(x_j ,x_{j+1} )= & {} x_j^2 +2x_{j+1}^2 -0.3\cos (3\pi x_j )\nonumber \\&-0.4\cos (4\pi x_{j+1} )+0.7 \end{aligned}$$
(17)
  1. (a)

    search domain: \(-100\leqq x_j \leqq 100, j = 1\);

  2. (b)

    one global minima: \((x_1 ,x_2 )= (0, 0); B2(x_1 ,x_2 )= 0\).

In the fourth experiment, the Mackey-Glass time series (Whitehead and Choate 1996) is expressed as follows:

$$\begin{aligned} \frac{dx(t)}{d(t)}=0.1x(t)+0.2\cdot \frac{x(t-17)}{1+x(t-17)^{10}} \end{aligned}$$
(18)

The research for the retrieved time step was in the range from 118 to 1118 with the Mackey-Glass time series function, from which 1000 samples were generated randomly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZY., Kuo, R.J. Combining SOM and evolutionary computation algorithms for RBF neural network training. J Intell Manuf 30, 1137–1154 (2019). https://doi.org/10.1007/s10845-017-1313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-017-1313-7

Keywords

Navigation