Skip to main content

Advertisement

Log in

Distributed optimal dispatch of integrated electricity and natural gas system considering the pipeline storage characteristics

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

As an important form of multi-energy complementation, the integrated electricity and natural gas system (IEGS) is a new carrier for renewable energy accommodation. Firstly, based on the natural gas pipeline model, the buffer effect of natural gas pipeline storage characteristics in response to natural gas load fluctuations is analyzed. Then, considering the pipeline storage characteristics, a dad-ahead economic dispatch model for IEGSs with a high proportion of wind power is established. And the extreme scenario optimization method is used in this model to deal with the uncertainty of wind power. Furthermore, a distributed solutions method based on the Improved Alternating Direction Method of Multipliers is proposed to accelerate the convergence of distributed solutions. Cases studies are conducted on a modified IEEE 39-bus system and a Belgium 20-node natural gas system to verify the effectiveness of models and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berger M, Radu D, Fonteneau R et al (2020) The role of power-to-gas and carbon capture technologies in cross-sector decarbonisation strategies[J]. Electr Power Syst Res 180:106039

    Article  Google Scholar 

  2. Faisal S (2020) Overview of integrated energy system with power to gas technology[J]. Int J Eng Res Appl 10(11):11–24

    MathSciNet  Google Scholar 

  3. Clegg S, Mancarella P (2016) Storing renewables in the gas network: modelling of power-to-gas seasonal storage flexibility in low-carbon power systems [J]. IET Gener Transm Distrib 10(3):566–575

    Article  Google Scholar 

  4. Wang K, Yu J, Yu Y et al (2018) A survey on energy internet: architecture, approach, and emerging technologies[J]. IEEE Syst J 12(3):2403–2416

    Article  MathSciNet  Google Scholar 

  5. Mirzaei MA, Nazari-Heris M, Mohammadi-Ivatloo B et al (2020) A Novel Hybrid Framework for Co-Optimization of Power and Natural Gas Networks Integrated with Emerging Technologies[J]. IEEE Syst J 99:1–11

    Google Scholar 

  6. He C, Zhang X, Liu T et al (2018) Coordination of interdependent electricity grid and natural gas network—a review[J]. Curr Sustain Renew Energy Rep 5(1):23–36

    Google Scholar 

  7. Wang Y, Qiu J, Tao Y et al (2020) Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems[J]. Appl Energy 280:115948

    Article  Google Scholar 

  8. Unsihuay C, Lima JWM, Souza ACZD (2007) Modeling the integrated natural gas and electricity optimal power flow[C] 2007 IEEE Power Engineering Society General Meeting. IEEE

  9. Li G, Zhang R, Jiang T et al (2017) Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process[J]. Appl Energy 194:696–704

    Article  Google Scholar 

  10. Tovar-Ramirez CA, Martinez-Mares A, Fuerte-Esquivel CR (2017) Short-term unit commitment for integrated natural gas and electricity infrastructures[C] Transmission and Distribution Conference and Exposition-latin America. IEEE

  11. Kou YN, Zheng JH, Zhigang LI et al (2017) Many-objective optimization for coordinated operation of integrated electricity and gas network[J]. J Modern Power Syst Clean Energy 5(3):350–363

    Article  Google Scholar 

  12. Qu K, Shi S, Yu T et al (2019) A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control[J]. Appl Energy 240(15):630–645

    Article  Google Scholar 

  13. Alabdulwahab A, Abusorrah A, Zhang X et al (2015) Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling[J]. IEEE Trans Sustain Energy 6(2):606–615

    Article  Google Scholar 

  14. Hu D, Ryan SM (2019) Stochastic versus deterministic scheduling of a combined natural gas and power system with uncertain wind energy[J]. Int J Electr Power Energy Syst 108:303–313

    Article  Google Scholar 

  15. Qadrdan M, Wu J, Jenkins N et al (2013) Operating strategies for a gb integrated gas and electricity network considering the uncertainty in wind power forecasts[J]. IEEE Trans Sustain Energy 5(1):128–138

    Article  Google Scholar 

  16. Chen Z, Zhu G, Zhang Y, Ji T, Liu Z, Lin X, Cai Z (2019) Stochastic dynamic economic dispatch of wind-integrated electricity and natural gas systems considering security risk constraints. CSEE J Power Energy Syst 5(3):324–334

    Google Scholar 

  17. Wang C, Wang Z, Hou Y, Wang J (2019) Chance-Constrained Maintenance Scheduling for Interdependent Power and Natural Gas Grids Considering Wind Power Uncertainty. IET Gener Transm Distrib 13(5):686–694

    Article  Google Scholar 

  18. Shu K, Ai X, Fang J et al (2019) Real-time subsidy based robust scheduling of the integrated power and gas system[J]. Appl Energy 236(15):1158–1167

    Article  Google Scholar 

  19. Martinez-Mares A, Fuerte-Esquivel CR (2013) A robust optimization approach for the interdependency analysis of integrated energy systems considering wind power uncertainty. IEEE Trans Power Syst 28(4):3964–3976

    Article  Google Scholar 

  20. Wu L, He C, Zhang X et al (2019) Distributionally robust scheduling of integrated gas-electricity systems with demand response[J]. IEEE Trans Power Syst 34(5):3791–3803

    Article  Google Scholar 

  21. Yang J, Zhang N, Kang C et al (2018) Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty[J]. IEEE Trans Power Syst 33(2):2087–2097

    Article  Google Scholar 

  22. Wang C, Gao R, Wei W et al (2019) Risk-based distributionally robust optimal gas-power flow with wasserstein distance[J]. IEEE Trans Power Syst 34(3):2190–2204

    Article  Google Scholar 

  23. Liu C, Shahidehpour M, Wang J (2011) Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow[J]. Chaos Interdiscip J Nonlinear Sci 21(2):531

    Article  Google Scholar 

  24. Bakken BH (2009) Linear models for optimization of interconnected gas and electricity networks[C]. IEEE Power and Energy Society General Meeting. IEEE

  25. Chaudry M, Jenkins N, Strbac G (2008) Multi-time period combined gas and electricity network optimization [J]. Electr Power Syst Res 78(7):1265–1279

    Article  Google Scholar 

  26. Correa-Posada CM, Sánchez-Martín P (2015) Integrated power and natural gas model for energy adequacy in short-term operation [J]. IEEE Trans Power Syst 30(6):3347–3355

    Article  Google Scholar 

  27. Wen Y, Qu X, Li W et al (2018) Synergistic operation of electricity and natural gas networks via ADMM[J]. IEEE Trans Smart Grid 9(5):4555–4565

    Article  Google Scholar 

  28. Liu C, Shahidehpour M, Wang J (2010) Application of augmented lagrangian relaxation to coordinated scheduling of interdependent hydrothermal power and natural gas systems [J]. IET Gener Transm Distrib 4(12):1314–1325

    Article  Google Scholar 

  29. Wang C, Wei W, Wang J et al (2018) Convex optimization based distributed optimal gas-power flow calculation[J]. IEEE Transactions on Sustainable Energy 9(3):1145–1156

    Article  Google Scholar 

  30. Wang C, Wei W, Wang J et al (2018) Strategic offering and equilibrium in coupled gas and electricity markets[J]. IEEE Trans Power Syst 33(1):290–306

    Article  Google Scholar 

  31. Gil M, Duenas P, Reneses J (2015) Electricity and Natural Gas Interdependency: Comparison of Two Methodologies for Coupling Large Market Models Within the European Regulatory Framework[J]. IEEE Trans Power Syst 31(1):1–9

    Google Scholar 

  32. Gil M, Duenas P, Reneses J (2013) The interdependency of electricity and natural gas markets: coupling of models[C]. European Energy Market. IEEE

  33. Spiecker S (2013) Modeling market power by natural gas producers and its impact on the power system[J]. IEEE Trans Power Syst 28(4):3737–3746

    Article  Google Scholar 

  34. Estimation and Inferential Statistics [M]. Springer India, 2015

  35. Matpower [EB/OL]. http://www.pserc.cornell.edu/matpower/

  36. Wolf DD, Smeers Y (2000) The gas transmission problem solved by an extension of the simplex algorithm[J]. Manage Sci 46(11):1454–1465

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by 2020 University-Level Project of Shenzhen Polytechnic (No. 6020310011K) and National Natural Science Foundation of China (No. 52078305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Xiao.

Appendix

Appendix

See Tables

Table 6 Parameters of coal-fired generators

6,

Table 7 Parameters of gas turbines

7,

Table 8 Parameters of gas wells

8,

Table 9 Parameters of power to gas facilities

9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, C., Xiao, M., Chen, Z. et al. Distributed optimal dispatch of integrated electricity and natural gas system considering the pipeline storage characteristics. Evol. Intel. 15, 2529–2539 (2022). https://doi.org/10.1007/s12065-021-00584-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00584-z

Keywords

Navigation