Skip to main content

Advertisement

Log in

Impacts of energy intensity target constraint on elasticity of substitution between production factors in China

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

China has implemented the energy intensity target (EIT) constraint policy to improve its energy efficiency for more than three decades. Producers in China need to consider factor prices, outputs, and EIT constraint while they plan the number of input factors. Therefore, this article brings the EIT into the conditional input demand function of an input factor and assesses the impacts of the elasticity of substitution between different production factors. By building two-factor substitution elasticity models with and without EIT constraints, this paper examines the impacts of EIT constraint on the elasticity of substitution between input factors in both the fossil fuel production sector and the non-fossil-fuel production sector. The main conclusions are, firstly, EIT constraint influences both own-price elasticity of an input factor and cross-price elasticity between different input factors. Secondly, EIT constraint hinders the responses of some input factors to the price changes of other input factors, and changes relationships between some input factors from complementary to substitute, or vice versa. Two policy implications are obtained. First, producers should consider the impacts of EIT constraint on their investment, labor input, energy input, and raw materials purchase and bring these impacts into their business strategies. Second, reducing energy input by changing prices of other production factors will be ineffective under EIT constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. According to enterprise ownership, Chinese firms can be classified into the following categories: private firms, joint-stock firms, joint ventures, state-owned firms, firms owned by the whole people, firms under collective ownership, and so on. However, this paper does not focus on the types of firms. As long as firms participate in economic activities in China’s market, they are the objects concerned by this paper.

  2. In a strict sense, energy intensity represents the energy consumption per unit of GDP. However, to facilitate the construction of models, energy intensity is set as the energy consumption per unit of output. There is no marked difference between the fluctuation velocities of the two kinds of index.

  3. Under the assumption of linear homogeneous input-demand functions of factors, the coefficient of \( \hat{E} \) is 1.

  4. Under the assumption of linear homogeneous input-demand functions of factors, the coefficient of \( \hat{X} \) is 1.

  5. See CIP3.0 Database http://www.rieti.go.jp/en/database/CIP2015/index.html.

  6. The four energy industries are mining and washing of coal, extraction of petroleum and natural gas, processing petroleum and coking, and production and supply of gas.

References

  • Allen, R. G. D. (1938). Mathematical analysis for economists. London: Macmillan and Company Limited.

    MATH  Google Scholar 

  • Andrikopoulos, A. A., Brox, J. A., & Paraskevopoulos, C. C. (1989). Interfuel and interfactor substitution in Ontario manufacturing, 1962-82. Applied Economics, 21(12), 1667–1681.

    Article  Google Scholar 

  • Arnberg, S., & Bjørner, T. B. (2007). Substitution between energy, capital and labour within industrial companies: A micro panel data analysis. Resource and Energy Economics, 29(2), 122–136.

    Article  Google Scholar 

  • Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economics and Statistics, 43(3), 225–250.

    Article  Google Scholar 

  • Behr, A. (2015). Production and efficiency analysis with R. Cham: Springer International Publishing.

    Book  MATH  Google Scholar 

  • Bentzen, J. (2004). Estimating the rebound effect in US manufacturing energy consumption. Energy Economics, 26(1), 123–134.

    Article  Google Scholar 

  • Berndt, E. R., & Christensen, L. R. (1973). The translog function and the substitution of equipment, structures, and labor in U.S. manufacturing 1929-68. Journal of Econometrics, 1(1), 81–113.

    Article  MATH  Google Scholar 

  • Berndt, E. R., & Wood, D. O. (1975). Technology, prices, and the derived demand for energy. The Review of Economics and Statistics, 57(3), 259–268.

    Article  Google Scholar 

  • Blackorby, C., & Russell, R. R. (1989). Will the real elasticity of substitution please stand up? (A comparison of the Allen/Uzawa and Morishima elasticities). The American Economic Review, 79(4), 882–888.

    Google Scholar 

  • Bölük, G., & Koç, A. A. (2010). Electricity demand of manufacturing sector in Turkey: A translog cost approach. Energy Economics, 32(3), 609–615.

    Article  Google Scholar 

  • Chen, S. Y. (2011). Estimation of industrial statistics of China: 1980-2008. China Economic Quarterly, 3, 735–776.

    Google Scholar 

  • Chirinko, R. S. O. (2008). The long and short of it. Journal of Macroeconomics, 30(2), 671–686.

    Article  Google Scholar 

  • Cho, W. G., Nam, K., & Pagán, J. A. (2004). Economic growth and interfactor/interfuel substitution in Korea. Energy Economics, 26(1), 31–50.

    Article  Google Scholar 

  • Christopoulos, D. K., & Tsionas, E. G. (2002). Allocative inefficiency and the capital-energy controversy. Energy Economics, 24(4), 305–318.

    Article  Google Scholar 

  • Cobb, C. W., & Douglas, P. H. (1928). A theory of production. The American Economic Review, 18(1), 139–165.

    Google Scholar 

  • De La Grandville, O. (1989). In quest of the Slutsky diamond. The American Economic Review, 79(3), 468–481.

    Google Scholar 

  • Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient tests for an autoregressive unit root. Econometrica, 64(4), 813–836.

    Article  MathSciNet  MATH  Google Scholar 

  • Engen, E., Gravelle, J., & Smetters, K. (1997). Dynamic tax models: Why they do the things they do. National Tax Journal, 50(3), 657–682.

    Article  Google Scholar 

  • Feng, F., Wang, X. M., & Wang, J. Z. (2012). A judgment on the development stage of China’s industrialization. China Development Observation, 08, 24–26 (in Chinese).

    Google Scholar 

  • Frondel, M. (2011). Modelling energy and non-energy substitution: A brief survey of elasticities. Energy Policy, 39(8), 4601–4604.

    Article  Google Scholar 

  • Frondel, M., & Schmidt, C. M. (2002). The capital-energy controversy: An artifact of cost shares? The Energy Journal, 23(3), 53–79.

    Article  Google Scholar 

  • Fullerton, D., & Heutel, G. (2010). The general equilibrium incidence of environmental mandates. American Economic Journal: Economic Policy, 2(3), 64–89.

    Google Scholar 

  • Gamponia, V., & Brown, G. (1982). Steel and energy substitution in U. S. manufacturing. Southern Economic Journal, 48(3), 785–791.

    Article  Google Scholar 

  • Geoffrey, A. J., & Philip, J. R. (2011). Advanced microeconomic theory (3rd ed.). Edinburgh: Pearson Education Limited.

    Google Scholar 

  • Griffin, J. M. (1981). Engineering and econometric interpretations of energy-capital complementarity: Comment. American Economic Review, 71(5), 1100–1104.

    Google Scholar 

  • Griffin, J. M., & Gregory, P. R. (1976). An intercountry translog model of energy substitution responses. The American Economic Review, 66(5), 845–857.

    Google Scholar 

  • Haller, S. A., & Hyland, M. (2014). Capital–energy substitution: Evidence from a panel of Irish manufacturing firms. Energy Economics, 45, 501–510.

    Article  Google Scholar 

  • Hang, L., & Tu, M. (2007). The impacts of energy price on energy intensity: Evidence from China. Energy Policy, 35(5), 2978–2988.

    Article  Google Scholar 

  • Hao, F. (2015). Formula correction and estimation methods comparison on elasticity of substitution within translog functions. The Journal of Quantitative & Technical Economics, (4), 88-105+122 (in Chinese).

  • Harris, A., McAvinchey, I. D., & Yannopoulos, A. (1993). The demand for labour, capital, fuels and electricity: A sectoral model of the United Kingdom economy. Journal of Economic Studies, 20(3), 24–35.

    Article  Google Scholar 

  • Hicks, J. R. (1932). The theory of wages. London: Macmillan and Company Limited.

    Google Scholar 

  • Humphrey, D. B., & Moroney, J. R. (1975). Substitution among capital, labor, and natural resource products in American manufacturing. Journal of Political Economy, 83(1), 57–82.

    Article  Google Scholar 

  • Iqbal, M. (1986). Substitution of labour, capital and energy in the manufacturing sector of Pakistan. Empirical Economics, 11(2), 81–95.

    Article  Google Scholar 

  • Irmen, A., & Klump, R. (2009). Factor substitution, income distribution and growth in a generalized neoclassical model. German Economic Review, 10(4), 464–479.

    Article  MathSciNet  Google Scholar 

  • Jorgenson, D., Christensen, L., & Lau, L. (1973). Transcendental logarithmic production function. The Review of Economics and Statistics, 55, 28–45.

    Article  Google Scholar 

  • Khiabani, N., & Hasani, K. (2010). Technical and allocative inefficiencies and factor elasticities of substitution: An analysis of energy waste in Iran’s manufacturing. Energy Economics, 32(5), 1182–1190.

    Article  Google Scholar 

  • Kim, J., & Heo, E. (2013). Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries. Energy Economics, 40, 81–89.

    Article  Google Scholar 

  • King, R. G., & Rebelo, S. T. (1993). Transitional dynamics and economic growth in the neoclassical model. The American Economic Review, 83(4), 908–931.

    Google Scholar 

  • Li, X. Y., & Lei, Q. L. (2018). Study on the determinant and fluctuation mechanism of labor income share. Statistical Research, 35(7), 91–101.

    Google Scholar 

  • Li, H., Zhao, X., Yu, Y., Wu, T., & Qi, Y. (2016). China’s numerical management system for reducing national energy intensity. Energy Policy, 94, 64–76.

    Article  Google Scholar 

  • Lin, B. Q., & Ahmad, I. (2016). Technical change, inter-factor and inter-fuel substitution possibilities in Pakistan: A trans-log production function approach. Journal of Cleaner Production, 126, 537–549.

    Article  Google Scholar 

  • Lin, B. Q., & Fei, R. (2015). Analyzing inter-factor substitution and technical progress in the Chinese agricultural sector. European Journal of Agronomy, 66, 54–61.

    Article  Google Scholar 

  • Lin, B. Q., & Li, J. (2014). The rebound effect for heavy industry: Empirical evidence from China. Energy Policy, 74, 589–599.

    Article  Google Scholar 

  • Lin, B. Q., & Liu, W. S. (2017). Estimation of energy substitution effect in China’s machinery industry--based on the corrected formula for elasticity of substitution. Energy, 129, 246–254.

    Article  Google Scholar 

  • Lin, B. Q., & Raza, M. Y. (2019). Analysis of energy related CO2 emissions in Pakistan. Journal of Cleaner Production, 219, 981–993.

    Article  Google Scholar 

  • Lin, B. Q., & Raza, M. Y. (2020a). Analysis of energy security indicators and CO2 emissions: A case from a developing economy. Energy, 200, 117575.

    Article  Google Scholar 

  • Lin, B. Q., & Raza, M. Y. (2020b). Energy substitution effect on transport sector of Pakistan: A trans-log production function approach. Journal of Cleaner Production, 251, 119606.

    Article  Google Scholar 

  • Ma, H., Oxley, L., Gibson, J., & Kim, B. (2008). China’s energy economy: Technical change, factor demand and interfactor/interfuel substitution. Energy Economics, 30(5), 2167–2183.

    Article  Google Scholar 

  • Ma, H., Oxley, L., & Gibson, J. (2009). Substitution possibilities and determinants of energy intensity for China. Energy Policy, 37(5), 1793–1804.

    Article  Google Scholar 

  • Mallick, D. (2012). The role of the elasticity of substitution in economic growth: A cross-country investigation. Labour Economics, 19(5), 682–694.

    Article  Google Scholar 

  • Masih, A. M. M., & Masih, R. (1996). Energy consumption, real income and temporal causality: Results from a multi-country study based on cointegration and error-correction modeling techniques. Energy Economics, 18(3), 165–183.

    Article  Google Scholar 

  • McFadden, D. (1963). Constant elasticity of substitution production functions. The Review of Economic Studies, 30(2), 73–83.

    Article  Google Scholar 

  • Morishima, M. (1967). A few suggestions on the theory of elasticity (in Japanese). Keizai Hyoron (Economic Review), 16, 144–150.

    Google Scholar 

  • Palivos, T., & Karagiannis, G. (2010). The elasticity of substitution as an engine of growth. Macroeconomic Dynamics, 14(5), 617–628.

    Article  MATH  Google Scholar 

  • Pan, X., Li, M., Pu, C., & Xu, H. (2020). Study on the industrial structure optimization under constraint of energy intensity. Energy & Environment.

  • Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346.

    Article  MathSciNet  MATH  Google Scholar 

  • Pindyck, R. S. (1979). Interfuel substitution and the industrial demand for energy: An international comparison. The Review of Economics and Statistics, 61(2), 169–179.

    Article  Google Scholar 

  • Raurich, X., Sala, H., & Sorolla, V. (2012). Factor shares, the price markup, and the elasticity of substitution between capital and labor. Journal of Macroeconomics, 34(1), 181–198.

    Article  Google Scholar 

  • Raza, M. Y., Lin, B. Q., & Liu, X. Y. (2021). Cleaner production of Pakistan’s chemical industry: Perspectives of energy conservation and emissions reduction. Journal of Cleaner Production, 278, 123888.

    Article  Google Scholar 

  • Saam, M. (2008). Openness to trade as a determinant of the macroeconomic elasticity of substitution. Journal of Macroeconomics, 30(2), 691–702.

    Article  MathSciNet  Google Scholar 

  • Sala, H., & Trivín, P. (2018). The effects of globalization and technology on the elasticity of substitution. Review of World Economics, 154(3), 617–647.

    Article  Google Scholar 

  • Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business & Economic Statistics, 7(2), 147–159.

    MathSciNet  Google Scholar 

  • Shao, S., Yang, Z., Yang, L., & Ma, S. (2019). Can China’s energy intensity constraint policy promote total factor energy efficiency? Evidence from the industrial sector. The Energy Journal, 40(4), 101–128.

    Article  Google Scholar 

  • Sharimakin, A. (2019). Measuring the energy input substitution and output effects of energy price changes and the implications for the environment. Energy Policy, 133, 110919.

    Article  Google Scholar 

  • Smyth, R., Narayan, P. K., & Shi, H. (2011). Substitution between energy and classical factor inputs in the Chinese steel sector. Applied Energy, 88(1), 361–367.

    Article  Google Scholar 

  • Solow, R. M. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65–94.

    Article  Google Scholar 

  • Stern, D. I. (2011). Elasticities of substitution and complementarity. Journal of Productivity Analysis, 36(1), 79–89.

    Article  Google Scholar 

  • Stock, J. H., & Watson, M. W. (1993). A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica, 61(4), 783–820.

    Article  MathSciNet  MATH  Google Scholar 

  • Su, X., Zhou, W., Nakagami, K. I., Ren, H., & Mu, H. (2012). Capital stock-labor-energy substitution and production efficiency study for China. Energy Economics, 34(4), 1208–1213.

    Article  Google Scholar 

  • Tan, R., Lin, B. Q., & Liu, X. Y. (2019). Impacts of eliminating the factor distortions on energy efficiency—A focus on China’s secondary industry. Energy, 183, 693–701.

    Article  Google Scholar 

  • Thompson, H. (2000). Energy taxes and wages in a general equilibrium model of production. OPEC Review, 24(3), 185–193.

    Article  Google Scholar 

  • Thompson, H. (2006). The applied theory of energy substitution in production. Energy Economics, 28(4), 410–425.

    Article  Google Scholar 

  • Turnovsky, S. J. (2008). The role of factor substitution in the theory of economic growth and income distribution: Two examples. Journal of Macroeconomics, 30(2), 604–629.

    Article  MathSciNet  Google Scholar 

  • Urga, G., & Walters, C. (2003). Dynamic translog and linear logit models: A factor demand analysis of interfuel substitution in US industrial energy demand. Energy Economics, 25(1), 1–21.

    Article  Google Scholar 

  • Uzawa, H. (1962). Production functions with constant elasticities of substitution. The Review of Economic Studies, 29(4), 291–299.

    Article  Google Scholar 

  • Vega-Cervera, J. A., & Medina, J. (2000). Energy as a productive input: The underlying technology for Portugal and Spain. Energy, 25(8), 757–775.

    Article  Google Scholar 

  • Wang, F., & Liu, X. Y. (2018). Assessment of the economic impacts of continuous energy intensity target constraint in China: Based on an analytical general equilibrium model. Journal of Cleaner Production, 189, 197–210.

    Article  Google Scholar 

  • Wang, F., Liu, X., & Nguyen, T. A. (2018). Evaluating the economic impacts and feasibility of China’s energy cap: Based on an Analytic General Equilibrium Model. Economic Modelling., 69, 114–126.

    Article  Google Scholar 

  • Welsch, H., & Ochsen, C. (2005). The determinants of aggregate energy use in West Germany: Factor substitution, technological change, and trade. Energy Economics, 27(1), 93–111.

    Article  Google Scholar 

  • Weng, Y., & Zhang, X. (2017). The role of energy efficiency improvement and energy substitution in achieving China’s carbon intensity target. Energy Procedia, 142, 2786–2790.

    Article  Google Scholar 

  • Yi, F. (2000). Dynamic energy-demand models: A comparison. Energy Economics, 22(2), 285–297.

    Article  Google Scholar 

  • Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association, 57(298), 348–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Zha, D., & Ding, N. (2014). Elasticities of substitution between energy and non-energy inputs in China power sector. Economic Modelling, 38, 564–571.

    Article  Google Scholar 

  • Zha, D., & Zhou, D. (2014). The elasticity of substitution and the way of nesting CES production function with emphasis on energy input. Applied Energy, 130, 793–798.

    Article  Google Scholar 

  • Zhang, J. J. (2015). International factor mobility, elasticity of substitution in production and the skilled–unskilled wage gap. International Review of Economics & Finance, 35, 122–129.

    Article  Google Scholar 

  • Zhang, P. (2019). Do energy intensity targets matter for wind energy development? Identifying their heterogeneous effects in Chinese provinces with different wind resources. Renewable Energy, 139, 968–975.

    Article  Google Scholar 

  • Zhao, H. L., & Lin, B. Q. (2019). Resources allocation and more efficient use of energy in China’s textile industry. Energy, 185, 111–120.

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China, grant number 71673217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqi Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Liu, X., Reiner, D.M. et al. Impacts of energy intensity target constraint on elasticity of substitution between production factors in China. Energy Efficiency 14, 34 (2021). https://doi.org/10.1007/s12053-021-09946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12053-021-09946-z

Keywords

Navigation