Skip to main content

Advertisement

Log in

Dwelling’s energy saving through the experimental study and modeling of technological interventions in a cold temperate climate of Argentina

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

The present work analyzes the potential of technological and economically feasible interventions performed to decrease the energy consumption in the building sector of the city of Santa Rosa, La Pampa, Argentina (latitude 36° 27′ S and longitude 64° 27′ W). The overall aim of our study is to assess the thermal and energy behavior of a compact conventional construction dwelling in a cold temperate climate zone through in situ measurements, interviews with occupants, and modeling. The specific objectives are to analyze the results of experimental thermal energy monitoring in extreme weather seasons, to audit occupants’ use habits, to simulate and weigh the monitoring real data, to obtain the dwelling’s thermo-physical model, to study the interventions potential through low-energy design strategies (conservation and solar gain), and to carry out an economic analysis of the proposals. The results showed that an envelope with thermal insulation is feasible from the economic point of view when considering neighboring countries’ cost of natural gas (NG). In Argentina, the low value per m3 of NG entails recovering the investment aimed at improving the envelopes’ thermal energy behavior 64 years later, three times the envelopes’ thermal insulation life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Exposure factor (Fe) = exposed area / envelope area, where the envelope area includes all the exterior surfaces of a building including all external additions, e.g., chimneys, bay windows, etc. The exposed area accounts for the exterior surfaces without party walls (Czajkowski and Gómez 1994).

  2. The compactness index is defined by Mascaro (1983) as the relationship between the perimeter of a circle and the perimeter of the project. (Ic) = perimeter of circle / perimeter of project × 100 (Czajkowski and Gómez 1994).

  3. IRAM-1793 (2003) is a standard on buildings’ thermal insulation (thermal insulating materials; insulation thickness of use; vocabulary and criteria of application). It evaluates the insulation quality. Level A: avoids condensation; level B: reasonable energy efficiency and comfort; level C: good comfort quality (minimum difference of temperature between inside surface and inside air).

    IRAM-11605 (1996 Mod. 2002, 2004) is a standard that evaluates the thermal conditioning of buildings, its habitability conditions, and the maximum values of thermal transmittance in opaque enclosures. It defines three comfort levels in descending order: A: recommended, B: medium, and C: minimum, for each maximum values of thermal transmittance in summer and winter conditions. In order to comply with the norm, the thermal transmittance of the ceilings, walls, and floors must be less than or equal to the maximum permissible thermal transmittance “U value max adm” corresponding to level B. The verification must be done simultaneously in summer and winter conditions, except for bioenvironmental area V and VI (IRAM-11603 1996) standards, where it is only required to comply with the winter condition. For summer conditions, the permissible maximum values are defined depending on the heat flux directions (descending in ceilings and horizontal in walls) and according to each bioenvironmental area. These U values are given for all items whose outer surface presents solar radiation absorption coefficient between 0.6 and 0.8. For coefficients lower than 0.6, the U value increases 20% in walls and 30% in ceilings, and for superiors to 0.8, the value decreases 15 and 20%, for walls and ceilings, respectively. In winter conditions, the permissible maximum values are given according to the outdoor design temperature obtained by subtracting 4.5 °C to the sites’ average minimum temperature.

  4. An unstructured interview or non-directive interview is an interview in which questions are not prearranged Rogers, 1945).

  5. SIMEDIF needs the building to be divided into thermal zones. A zone is a building space that can be considered isothermal (i.e., a zone can be a group of various rooms in the building or a part of a room). Thus, each zone has a unique temperature whose temporal evolution is determined by the software, using the building data, materials, location, orientation, ambient temperature, and solar irradiance on horizontal surface in the simulation period. Those zones are connected to each other and with the environment by elements that have any of the following thermal characteristics.

    • Storage and heat transfer by conduction, such as brick walls, adobe walls, and concrete walls. These elements are called massive walls.

    • Storage into a uniform temperature mass such as water walls where the water is supposed to convect and has a uniform temperature.

    • Heat transfer by conduction without storage, such as wood and expanded polystyrene. In SIMEDIF, these elements are called lightweight walls.

    • Heat transfer by conduction with two heat transfer coefficients (day and night), such as windows with night insulation. These elements—windows—do not describe to solar gain or ventilation.

    • Heat transfer by convection, such as openings in the walls that allow a convective air exchange. These elements are doors and vents in SIMEDIF.

    An energy balance is expressed at each node for which the temperature is to be determined. These nodes are of two different types: massive nodes (i.e., the nodes on massive walls and water walls) and non-massive nodes (i.e., the nodes on air and lightweight walls).

    The program calculates the temperatures T i (t) inside and on massive wall surfaces by dividing the wall, that can be made of different materials (characterized by their conductivity k, density ρ, and specific heat to constant pressure c p ), into a number of layers defined by the user, and applying the heat transfer equations in one dimension to each layer. The building surfaces are described by an absorption coefficient α, and they can receive solar radiation I(t) on all its surface or on a smaller area A R . The heat transfer between a building surface and the surrounding air is described with a heat transfer coefficient h (W/m2°C), which includes convection and radiation.

    The finite-difference explicit method is used to replace the time and spatial derivatives by finite differences. The result is a set of equations for massive nodes. The temperature at time t + Δt can be evaluated from temperatures at the previous time t. This set of equations constitutes an initial value problem. Initial conditions, consisting of the starting storage mass temperatures and air temperatures, must be specified.

    The room temperature T r (t) at t + Δt is computed from the heat balance equation valued in the previous instant t. In this balance equation, the air renewals in the room, inner heat gains, and heat transfer due to the different elements connecting the room with other zones in the building and with outdoors are considered.

    The software calculates the hourly zone temperature by using the building data, materials, site, orientation, outdoor temperature, and solar irradiance on horizontal surface. The geometrical data is obtained from the construction drawings and the thermal properties of materials from tables commonly available in the heat transfer literature. The hourly outdoor temperature and solar irradiance is monitored and recorded in a text file that is read by the program.

    Convective-radiative heat transfer coefficients are estimated through the dimensional equation:

    $$ h=5.7+3.8v $$

    where v is the wind speed in m/s and h is the heat transfer coefficient in W/m2°C. This equation includes the effects of free convection and radiation, as Duffie and Beckman (1991) pointed out. The monitored mean wind velocity was 1.6 m/s; thus, a heat transfer coefficient of 12 W/m2 °C was imposed on external surfaces. On internal surfaces, convective-radiative heat transfer coefficients of 8 and 6 W/m2 °C (for surfaces with and without solar gain, respectively) were imposed. These values are found to give accurate adjustments of monitored data, based on the authors’ own experience on building thermal simulation.

  6. Volumetric heat loss coefficient (G value) = the total heat loss of a building through the envelope and ventilation divided by the heated volume and the temperature at which the loss occurs. The coefficient is calculated according to

    $$ G=\sum Km\times Sm+\sum Kv\times Sv+\sum \gamma Kr\times Sr+ Kp\times P\times \gamma +\sum Kr\times Sr/V+0.35\times n=\mathrm{W}/{\mathrm{m}}^3\kern0.5em \mathrm{K} $$

    Km: thermal transmittance of walls in contact with external ambient (W/m2°C); S: surface area (m2); Kv: thermal transmittance of glazing; Kr: corrected thermal transmittance of envelope (opaque or transparent) in contact with non-heating spaces; γ: 0.5 (in contact with heating spaces); γ: 1 (other cases); Kp: thermal transmittance of floor; P: perimeter of the floor; β β : 1 m; 0.35 air specific heat (W/hm3°C); V: volume of heating spaces; n: average ventilation rate per hour (ach) (IRAM-11604 2001).

  7. Base coat is a cementitious material with polymer additive. It is used as an adhesive and as a coating base on thermal insulation.

References

  • Adigas. (2014). Web page accessed on 24th Agoust 2014. http://www.adigas.com.ar/precios_internacionales.php . (international prices) (in Spanish).

  • Auliciems, A., & Szokolay, S. (2007). Thermal Comfort, Note 3. In PLEA Notes (2nd ed.).

  • Balances Energéticos/ Secretaría de Energía/ Ministerio de planificación. (2012). Balance Energético Nacional 2012. Capital Federal: Tecnología de la Información - Secretaría de Energía (in Spanish).

    Google Scholar 

  • Balaras, C., Droutsa, K., Dascalaki, E., & Kontoyannidis, S. (2005). Heating energy consumption and resulting environmental impact of European apartment buildings. Energy and Building, 37, 329–442. https://doi.org/10.1016/j.enbuild.2004.08.003.

    Google Scholar 

  • Beascochea, A., & Filippín, C. (1998). Residencias Bioclimáticas para la Universidad Nacional de La Pampa. Avances en Energías Renovables y Medio Ambiente, 2(1), 03.13–03.16 (in Spanish).

    Google Scholar 

  • Binda, A., & Lesino, G. (1987). Simulación computacional del comportamiento térmico de edificios para verano. In Actas de la XII Reunión de Trabajo de ASADES, II (pp. 289–296). Buenos Aires, Argentina (in Spanish).

  • Carlsson-Kanyama, C., Engström, R., & Kok, R. (2005). Indirect and direct energy requirements of city households in Sweden. Journal of Industrial Ecology, 9, 221–235.

    Article  Google Scholar 

  • Casermeiro, M., & Saravia, L. (1984). Cálculo térmico horario de edificio solares pasivos. In Actas de la IX Reunión de Trabajo de ASADES (Asociación Argentina de Energía Solar) (pp. 39–45). San Juan, Argentina (in Spanish).

  • Caso, R., Lesino, G., & Saravia, L. (1986). Mediciones de edificios solares en Cachi y Abdón Castro Tolay. In Actas de la XI Reunión de Trabajo (Asociación Argentina de Energía Solar) (pp. 13–18). San Luis, Argentina (in Spanish).

  • Climasdeargentina’s Blog. (2009). Web page accessed on 10th July 2009 climasdeargentina. wordpress.com: https://climasdeargentina.wordpress.com.

  • Corgnati, S., Fabrizio, E., Raimondo, D., & Filippi, M. (2011). Categories of indoor environmental quality and building energy demand for haeting and cooling. Building simulation Journal, 4(2), 97–105.

    Article  Google Scholar 

  • CPE-Cooperativa Popular de Electricidad. (2015). Memoria y Balance. Ejercicio Económico y Social N° 82, 2014–2015. Santa Rosa, La Pampa, Argentina (in Spanish).

  • Czajkowski, J., & Gómez, A. (1994). Diseño bioclimático y economía energética edilicia. Fundamentos y métodos. Editorial de la U.N.L.P. (in Spanish).

  • Czajkowski, J. D. (2011). Comparación de la demanda de energía en calefacción en Argentina y otros países. In J. Czajkowski, A. Gomez, C. Filippín, C. Vagge, M. Salvetti, M. Diulio, M. Bianciotto, & L. F. UNLP (Eds.), Cuadernos de Arquitectura Sustentable: artículos seleccionados, 2011 (1st ed., pp. 15–24). La Plata: Impresiones Dunken (in Spanish).

  • Dombaycı, Ö. (2007). The environmental impact of optimum insulation thickness for external walls of buildings. Building and Environment, 42, 3855–3859. https://doi.org/10.1016/j.buildenv.2006.10.054.

    Article  Google Scholar 

  • Duffie, J., & Beckman, W. (1991). Solar engineering of thermal processes (2nd ed.). New York: Wiley Interscience.

    Google Scholar 

  • Esteves, A., Fernandez, J., Basso, M., Mitchel, J., & de Rosa, C. (1994). Simulación térmica de edificios: aplicación de los modelos Quick y SIMEDIF. In Actas de la XVII Reunión de Trabajo de ASADES (pp. 543–550). Rosario, Argentina (in Spanish).

  • Fabi, V., Andersen, R. V., Corgnati, S., & Olesen, B. W. (2012). Occupants' window opening behaviour: a literature review of factors influencing occupant behaviour and models. Building and Environment, 58, 188–198. https://doi.org/10.1016/j.buildenv.2012.07.009.

    Article  Google Scholar 

  • Filippín, C., & Beascochea, A. (2007). Performance assessment of low-energy buildings in central Argentina. Energy and Buildings, 39, 546–557.

    Article  Google Scholar 

  • Filippín, C., Marek, L., Flores Larsen, S., & Lesino, G. (2007). An energy efficient school for a nature disposed population in arid lands of Central Argentina. Journal of Building Physics, 30(3), 241–260. https://doi.org/10.1177/1744259107071548.

    Article  Google Scholar 

  • Filippín, C., Flores Larsen, S., & Mercado, V. (2011). Winter energy behaviour in multi-family block buildings in a temperate-cold climate in Argentina. Renewable and Sustainable Energy Reviews, 15, 203–219. https://doi.org/10.1016/j.rser.2010.09.038.

    Article  Google Scholar 

  • Filippín, C., Sipowicz, E., & Flores Larsen, S. (2015). Análisis de ciclo de vida de una vivienda auditada en condiciones reales de uso en la region central de Argentina. Energias Renovables y Medio Ambiente, 35, 7–19 (in Spanish).

    Google Scholar 

  • Flores Larsen, S., & Lesino, G. (2001). A new code for the hour-by-hour thermal behavior simulation of buildings (pp. 75–82). Río de Janeiro, Brasil: Lesino. Seventh International IBPSA Conference On Building Simulation.

    Google Scholar 

  • Flores Larsen, S., Hernández, A., Lesino, G., & Salvo, N. (2001). Measurement and simulation of the thermal behavior of a massive building with passive solar conditioning. Actas del VII International Building Simulation Congress.

  • Flores Larsen, S., Filippín, C., Beascochea, A., & Lesino, G. (2008). An experience on integrating monitoring and simulation tools in the design of energy-saving buildings. Energy and Buildings, 40(6), 987–997.

    Article  Google Scholar 

  • Flores Larsen, S., Filippín, C., & Lesino, G. (2009). Thermal behavior of building walls in summer: comparison of available analytical methods and experimental results for a case study. Building Simulation, 2(1), 3–18. https://doi.org/10.1007/S12273-009-9103-6.

    Article  Google Scholar 

  • González, A. D. (2009). Energy subsidies in Argentina lead to inequalities and low thermal efficiency. Energies, 2, 769–788. https://doi.org/10.3390/en20300769.

    Article  Google Scholar 

  • González, A., Carlsson-Kanyama, A., Crivelli, C., & Gortari, S. (2007). Residential energy use in one-family households with natural gas provision in a city of the Patagonian Andean region. Energy Policy, 35, 2141–2150. https://doi.org/10.1016/j.enpol.2006.07.004.

    Article  Google Scholar 

  • Gonzalo, G. (2003). Manual de Arquitectura Bioclimatica. Tucumán: Nobuko (in Spanish).

    Google Scholar 

  • Hernández, A., & Lesino, G. (1993). Análisis de la performance térmica de un prototipo de vivienda liviana: monitoreo y simulación macrodinámica. Actas de la XVI Reunión de Trabajo de ASADES, I (pp. 167–174). La Plata, Argentina (in Spanish).

  • Hernandez, A., & Lesino, G. (2000). Simulación mediante SIMEDIF del comportamiento térmico de un prototipo de vivienda liviana construido en la Universidad Nacional de Salta. Avances en Energías Renovables y Medio Ambiente, 4(2), 08.29–08.34 (in Spanish).

  • Hernandez, A., Flores Larsen, S., Salvo, N., & Lesino, G. (1999). Simulación no estacionaria mediante SIMEDIF del ala oeste del edificio de Agronomía de la Universidad Nacional de La Pampa. Avances en Energías Renovables y Medio Ambiente, 3(2), 08.113–08.116 (in Spanish).

    Google Scholar 

  • INDEC. (2011). Retrieved May 04, 2011, Web page accessed on 25th May 2012 INDEC: http://www.indec.mecon.ar/principal.asp?id_tema=2288.

  • IRAM-11601. (2002). Norma IRAM 11605 - Aislamiento térmico de edificios. Métodos de Cálculo. Buenos Aires: Instituto Argentino De Normalización Y Certificación (in Spanish).

    Google Scholar 

  • IRAM-11603. (1996). Norma IRAM 11603: Clasificación bioambiental de la República Argentina. Buenos Aires: Instituto Argentino de Normalización y Certificación (in Spanish).

    Google Scholar 

  • IRAM-11604. (2001). Norma IRAM 11604: Aislamiento térmico de edificios. Verificación de sus condiciones higrotérmicas. Ahorro de energía en calefacción. Coeficiente volumétrico G de pérdidas de calor. Cálculo y valores límites. Buenos Aires: Instituto Argentino de Normalización y Certificación (in Spanish).

    Google Scholar 

  • IRAM-11605. (1996). Norma IRAM 11605 - Acondicionamiento termico de edificios. Condiciones de habitabilidad en edificios. Valores maximos de transmitancia termica en cerramientos opacos. Buenos Aires: IRAM, INSTITUTO ARGENTINO DE NORMALIZACIÓN Y CERTIFICACIÓN, Mod. 2002.

  • IRAM-1793. (2003). Norma IRAM 1793: Thermal insulating materials. Using thickness. Vocabulary and aplication criteria. Buenos Aires: IRAM, INSTITUTO ARGENTINO DE NORMALIZACIÓN Y CERTIFICACIÓN (in Spanish).

  • Manzoni, C. (2009). La Energía para este invierno. Diario La Nación, Sección Economía - pag. 01–02 (in Spanish). Web page accessed on 24th Mat 2009 http://www.lanacion.com.ar/1131498-la-energia-para-este-invierno#top.

  • Mascaro, J. L. (1983). Variación de los costos de los edificios con las decisiones arquitectónicas. La Plata: Facultad de Arquitectura y Urbanismo Universidad Nacional de La Plata (in Spanish).

  • Nawawi, A. H., & Khalil, N. (2008). Post-occupancy evaluation correlated with building occupants’ satisfaction: an approach to performance evaluation of government and public buildings. Journal of Building Appraisal, 4, 59–69.

    Article  Google Scholar 

  • New Method 5000 (1994). In: J. Goulding, J. Owen Lewis, T. Steemers, Energy in architecture. The European Passive Solar Handbook (pp. 05.121–05.128) London: B.T. Batsford for the Commission of the European Communities, Directorate General XII for Science, Research and Development.

  • Omer, A. (2009). Energy efficiency, climate change, buildings and the need for development in renewable energy use. In Buildings and the environment (pp. 91–132). New York: Nova Science Publishers.

    Google Scholar 

  • Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Building, 40, 394–398. https://doi.org/10.1016/j.enbuild.2007.03.007.

    Article  Google Scholar 

  • Reyes, J., & Evans, J. (1993). Normas de aislación e inercia térmica. Desarrollo y aplicación. Reporte Final. In Actas de la XVI Reunión de Trabajo de ASADES (pp. 141–148). La Plata, Argentina (in Spanish).

  • Rogers, C. R. (1945). Frontier thinking in guidance (pp. 105–112). San Francisco: University of California: Science Research Associates. Retrieved March 18 2015.

  • Saidur, R., Masjuki, H., & Jamaluddin, M. (2007). An application of energy and exergy analysis in residential sector of Malaysia. Energy Policy, 35(2), 1050–1063. https://doi.org/10.1016/j.enpol.2006.02.006.

    Article  Google Scholar 

  • Sartori, I., & Hestnes, A. (2007). Energy use in the life cycle of conventional and low-energy buildings: a review article. Energy and Buildings, 39, 249–257.

    Article  Google Scholar 

  • Secretaria de Ambiente y Desarrollo Sustentable de la Nacion. (2013). Sistema de indicadores de Desarrollo Sostenible: Version sintetica. Buenos Aires: Secretaria de Ambiente y Desarrollo Sustentable de la Nacion Retrieved 02 Oct 2014, Accessed on http://www.ambiente.gov.ar/archivos/web/Indicadores/image/SIDSA%202013/37-1gr.jpg (in Spanish).

    Google Scholar 

  • Subsecretaría de Planeamiento. (1994). La Pampa, Argentina. Análisis de la Realidad. In Gobierno de La Pampa (p. 156). Gral Acha, La Pampa: L&M SRL (in Spanish).

  • Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renewable and Sustainable Energy Reviews, 13, 1819–1835. https://doi.org/10.1016/j.rser.2008.09.033.

    Article  Google Scholar 

  • Yıldız, A.,Gürlek, G., Erkek, M., & Özbalta, N. (2008). Economical and environmental analyses of thermal insulation thickness in buildings. Journal of Thermal Science and Technology, 28(2), 25–34.

  • Yu, Z., Fung, B. C., Haghighat, F., Yoshino, H., & Morofsky, E. (2011). A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy and Buildings, 43, 1409–1417. https://doi.org/10.1016/j.enbuild.2011.02.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eugenia Sipowicz, Halimi Sulaiman or Celina Filippín.

Ethics declarations

Ethical statement

The manuscript submitted has been prepared according to the journal’s “Instructions for Authors” and checked for all possible inconsistencies and typographical errors. On submission of the manuscript, the authors agree not to withdraw their manuscript at any stage prior to publication.

Regarding Copyright and License Agreement for the submission of this article, we state that

(a) The article submitted is an original work and has neither been published in any other peer-reviewed journal nor is under consideration for publication by any other journal. More so, the work does not contravene any existing copyright or any other third party rights.

(b) The article contains no such material that may be unlawful, defamatory, or which would, if published, in any way whatsoever, violate the terms and conditions as laid down in the agreement.

(c) We have taken due care that the scientific knowledge and all other statements contained in the article conform to true facts.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sipowicz, E., Sulaiman, H., Filippín, C. et al. Dwelling’s energy saving through the experimental study and modeling of technological interventions in a cold temperate climate of Argentina. Energy Efficiency 11, 975–995 (2018). https://doi.org/10.1007/s12053-017-9572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-017-9572-x

Keywords

Navigation