Energy Efficiency

, Volume 11, Issue 5, pp 1057–1082 | Cite as

A bottom-up estimation of the heating and cooling demand in European industry

  • Matthias RehfeldtEmail author
  • Tobias Fleiter
  • Felipe Toro
Original Article


Energy balances are usually aggregated at the level of subsector and energy carrier. While heating and cooling accounts for half the energy demand of the European Union’s 28 member states plus Norway, Switzerland and Iceland (EU28 + 3), currently, there are no end-use balances that match Eurostat’s energy balance for the industrial sector. Here, we present a methodology to disaggregate Eurostat’s energy balance for the industrial sector. Doing so, we add the dimensions of temperature level and end-use. The results show that, although a similar distribution of energy use by temperature level can be observed, there are considerable differences among individual countries. These differences are mainly caused by the countries’ heterogeneous economic structures, highlighting that approaches on a process level yield more differentiated results than those based on subsectors only. We calculate the final heating demand of the EU28 + 3 for industrial processes in 2012 to be 1035, 706 and 228 TWh at the respective temperature levels > 500 °C (e.g. iron and steel production), 100–500 °C (e.g. steam use in chemical industry) and < 100 °C (e.g. food industry); 346 TWh is needed for space heating. In addition, 86 TWh is calculated for the industrial process cooling demand for electricity in EU28 + 3. We estimate additional 12 TWh of electricity demand for industrial space cooling. The results presented here have contributed to policy discussions in the EU (European Commision 2016), and we expect the additional level of detail to be relevant when designing policies regarding fuel dependency, fuel switching and specific technologies (e.g. low-temperature heat applications).


Energy demand modelling Temperature End-use Industry Process European Union 



We would like to acknowledge the contribution of the team involved in the ‘Mapping Heat’ project (Fraunhofer ISI, Fraunhofer ISE, TU Wien, TEP Energy, IREES, Observer 2016), Matthias Reuter, who gathered information on European energy and end-use balances, Andrea Herbst, who maintains and updates our database of industrial production and Felix Reitze for his support with process cooling. We would also like to thank the three anonymous reviewers for their helpful comments and patience.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12053_2017_9571_MOESM1_ESM.xlsx (80 kb)
ESM 1 (XLSX 80 kb)


  1. Arens et al. (2012). Energy intensity development of the German iron and steel industry between 1991 and 2007. Energy, 45(2012), 786–797.CrossRefGoogle Scholar
  2. Arens et al. (2016). Pathways to a low-carbon iron and steel industry in the medium-term—the case of Germany. Journal of Cleaner Production, 2016.
  3. Bakhtiari et al. (2010). Opportunities for the integration of absorption heat pumps in the pulp and paper process. Energy, 35(2010), 4600–4606.CrossRefGoogle Scholar
  4. Biere et al. (2014). Industry—more than just processes: a combined stock-model approach to quantify the energy saving potential for space heating in European industry. ECEEE industrial summer study proceedings 2014.Google Scholar
  5. Brauer (1996). Handbuch des Umweltschutzes und der Umwelttechnik Band 2: Produktions- und produktintegrierter Umweltschutz, Heidelberg 1996.Google Scholar
  6. BREF Glass (2013). Best available techniques (BAT) reference document for the manufacture of glass. Accessed 3/27/2017, Luxembourg 2013.
  7. BREF Ceramic (2007). Reference document on the best available techniques in the ceramic manufacturing industry. Accessed 3/27/2017, Luxembourg 2007.
  8. Bundesverband der Gipsindustrie (2013). Gips-Datenbuch. Berlin 2013, Accessed 3/28/2017.
  9. Büchel et al. (1999). Industrielle anorganische chemie (3rd ed.). Weinheim (Germany): Wiley-VCH Verlag 1999.CrossRefGoogle Scholar
  10. Cembureau (2013). World statistical review 2001–2013. Accessed 3/29/2017.
  11. Cheeley (1999). Gasification and the MIDREX direct reduction process. Presentation at the 1999 gasification technologies conference, San Francisco 1999.Google Scholar
  12. Department for Business, Energy & Industrial Strategy (2016a). Energy consumption in the UK (ECUK) 2016 data tables. Table 4.04. Accessed 12/19/2016.
  13. Department for Business, Energy & Industrial Strategy (2016b). Digest of United Kingdom Energy Statistics (DUKES) 2016. Accessed 12/19/2016.
  14. Department for Business, Energy & Industrial Strategy (2016c). Energy consumption in the UK: a user guide. Accessed 12/19/2016.
  15. Dondi et al. (1997). Recycling of industrial and urban wastes in brick production—a review. Tile & Brick International, 13(3), 1997.Google Scholar
  16. ECHA (2016). Registered substances. European chemicals agency: information on chemicals. Accessed 4/14/2016.
  17. EuroChlor (2017). Chlorine industry review (2015–2016). Belgium, Accessed 3/29/2017.
  18. European Commission (2007). Lot 12 commercial refrigerators and freezers. Final report. Preparatory Studies for Eco-design Requirements of EuPs [TREN/D1/40–2005/LOT12/S07.56644]. Brussels 2007.Google Scholar
  19. European Commission (2011). ENTR-Lot 1 refrigerating and freezing equipment. Preparatory Studies for Eco-design Requirements of EuPs [Contract N° S12.515749]. Brussels 2011.Google Scholar
  20. European Commission (2014). Quality report of European Union energy statistics. Accessed 3/24/2017.
  21. European Commission (2016). European commission—fact sheet, Accessed 8/11/2016.
  22. Fraunhofer ISI, Fraunhofer ISE, TU Wien, TEP Energy, IREES, Observer (2016). Mapping and analyses of the current and future (2020–2030) heating/cooling fuel deployment (fossil/ renewables). uploaded 3/2017. Accessed 3/20/2017.
  23. European Parliament (2008). Regulation (EC) No 1099/2008 of the European parliament and of the council. Accessed 4/14/2016.
  24. Eurostat. (2007). Panorama of energy—energy statistics to support EU policies and solutions. Luxembourg: European Communities.Google Scholar
  25. Eurostat (2016a). Eurostat structural business statistics, annual detailed enterprise statistics for industry (NACE Rev. 2, B-E) (sbs_na_ind_r2). Accessed 4/8/2016.
  26. Eurostat (2016b). Database on energy demand/energy balances. Accessed 4/14/2016.
  27. Fleiter et al. (2012). Energy efficiency in the German pulp and paper industry—a model-based assessment of saving potentials. Energy, 40(2012), 84–99.CrossRefGoogle Scholar
  28. Fleiter et al. (2013). Energieverbrauch und CO2-Emissionen industrieller Prozesstechnologien—Einsparpotenziale, Hemmnisse und Instrumente. Stuttgart 2013.Google Scholar
  29. German Pulp and Paper Association (VDP) (2016). Papierkompass 2014/2015 and older issues. Accessed 3/29/2017.
  30. Glassglobal (2017): “Glassglobal Plants”, restricted online database, available at:, accessed: 3/29/2017.
  31. Gutierrez, V. (2011). Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production. Energy, 36(2011), 2820–2827.CrossRefGoogle Scholar
  32. Hara et al. (1999). Smelting reduction process with a coke packed bed for steelmaking dust recycling. ISIJ International, 40 (2000), (3), 231–237.Google Scholar
  33. ISI (2013). Erstellung von Anwendungsbilanzen für das Jahr 2012 für das verarbeitende Gewerbe mit Aktualisierungen für die Jahre 2009–2011. Karlsruhe, 2013.Google Scholar
  34. Krone (2000). Aluminiumrecycling Vom Vorstoff bis zur fertigen Legierung. Aluminium-Verlag, Düsseldorf 2000.Google Scholar
  35. Laurijssen et al. (2012). Benchmarking energy use in the paper industry: a benchmarking study on process unit level. Energy Efficiency (2013), 6, 49–63.CrossRefGoogle Scholar
  36. Lauterbach et al. (2012). The potential of solar heat for industrial processes in Germany. Renewable and Sustainable Energy Reviews, 16(2012), 5121–5130.CrossRefGoogle Scholar
  37. Midrex (2013). The MIDREX Process. Company brochure. Accessed 3/28/2017.
  38. Naegler et al. (2015). Quantification of the European industrial heat demand by branch and temperature level. International Journal of Energy Research (2015).
  39. Nowicki, & Gosselin. (2012). An overview of opportunities for waste heat recovery and thermal integration in the primary aluminum industry. JOM (2012), 64, 990. Scholar
  40. Pardo et al. (2013). Methodology to estimate the energy flows of the European Union heating and cooling market. Energy, 52, 339–352.CrossRefGoogle Scholar
  41. Patil and Khond (2014). Alternative fuels for cement industry: a review. Proceedings of the 2014 international conference on industrial engineering and operations management, 2014.Google Scholar
  42. Patterson. (1996). What is energy efficiency? Concepts, indicators and methodological issues. Energy Policy, 24(5), 377–390.CrossRefGoogle Scholar
  43. Rahman et al. (2013). Impact of alternative fuels on the cement manufacturing plant performance. An overview. Procedia Engineering, 56(2013), 393–400.CrossRefGoogle Scholar
  44. Primetals (2015). COREX® efficient and environmentally friendly smelting reduction. Company brochure. Accessed 3/28/2017.
  45. Statistik Austria 2016a. EEV 2005 bis 2015 nach ET und Nutzenergiekategorien für Österreich (Detailinformationen). Accessed 12/20/2016.
  46. Statistik Austria 2016b. Gesamtenergiebilanz Österreich 1970 bis 2015 (Detailinformation). Accessed 12/20/2016.
  47. SVK, (2012). Elektrizitätsbedarf für Kühlen in der Schweiz - Kampagne effiziente Kälte. Zürich, September 2012.Google Scholar
  48. UBA (2015). Sustainable cooling supply for building air conditioning and industry in Germany. Dessau-Roßlau, April 2015.Google Scholar
  49. UNdata (2017) (FAO). Paper and Paperboard. UNdata viewer presentation of data from FAO (Food and Agriculture Organization). Accessed 3/29/2017.
  50. UNFCCC (2017). Flexible Queries. Accessed 3/20/2017.
  51. US Geological Survey (2017). Mineral Information. Accessed 3/29/2017.
  52. U.S. Department of Energy (2008). Waste heat recovery: technology and opportunities in U.S. Industry. March 2008.Google Scholar
  53. van Deventer. (1997). Feasibility of energy efficient steam drying of paper and textile including process integration. Applied Thermal Engineering, 17, 1035–1041.CrossRefGoogle Scholar
  54. VDMA (2011). Energiebedarf für Kältetechnik in Deutschland - Eine Abschätzung des Energiebedarfs von Kältetechnik in Deutschland nach Einsatzgebieten. Frankfurt am Main, 17.03.2011.Google Scholar
  55. Werner (2006). The new European heating index. 10th international symposium on district heating and cooling (September 3–5, 2006), Section 4 a: Effects on DH from directives, laws and regulations, Hanover.Google Scholar
  56. Werner (2015). European space cooling demands. Energy (2015), 1–9.Google Scholar
  57. Weissermel, Arpe (1998). Industrielle Organische Chemie. 5th Edition, Weinheim (Germany) 1998.Google Scholar
  58. World Steel Association (2016). Steel statistical yearbook (and previous issues). Accessed 3/20/2017.
  59. Winnacker-Küchler (2006). Chemische Technik Prozesse und Produkte, 6a Metalle. Darmstadt, ISBN-13: 978–3–527-31580-2.Google Scholar
  60. Worrell et al. (2008). World best practice energy intensity values for selected industrial sectors. Berkeley, USA 2008.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Fraunhofer Institute for Systems and Innovation Research ISIKarlsruheGermany
  2. 2.Institute for Resource Efficiency and Energy Strategies IREESKarlsruheGermany

Personalised recommendations