Skip to main content

Advertisement

Log in

Achieving a better energy-efficient automotive air-conditioning system: a review of potential technologies and strategies for vapor compression refrigeration cycle

  • Review Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

This article presents a review of potential technologies and strategies to develop an energy-efficient automotive air-conditioner based on the vapor-compression refrigeration cycle system. This paper is broadly divided into two sections. The first is a review of component optimization (primary and secondary components) that enhances the energy efficiency of the automotive air-conditioning (AAC) system. The second presents a review of operational management and control that efficiently consumes energy in operating the AAC system while maintaining vehicular thermal comfort satisfaction. Some of the technologies and strategies described in this article are still conceptual and are the subject of ongoing research. However, the growing demand to reduce energy consumption by developing a new AAC system has led to an increasing number of related studies aimed at generating alternative conventional systems in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

A/C:

Air-conditioning

AAC:

Automotive air-conditioning

CRC:

Conventional refrigerant cycle

DEAC:

Dual-evaporator air-conditioning

DX:

Direct expansion

EEV:

Electronic expansion valve

EV:

Electric vehicle

EVDC:

Externally controlled variable capacity compressor

FCC:

Fixed capacity compressor

FDC:

Fixed displacement compressor

FSTPID:

Fuzzy self-tuning proportional integral derivative

HVAC:

Heating, ventilation, and air conditioning

MEC:

Modified ejector cycle

RV:

Revolving vane

SC:

Standard cycle

SEC:

Standard ejector cycle

TEV:

Thermostatic expansion valve

TPERC:

Two-phase ejector refrigerant cycle

VAV:

Variable air volume

VCC:

Variable capacity compressor

VCR:

Vapor compression refrigeration

VCRAAC:

Vapor compression refrigerant, automotive air-conditioning

2LP:

Secondary loop system

h :

Refrigerant enthalpy, kJ/kg

p :

Pressure, bar

T :

Temperature, °C

V :

Air velocity, m/s

Subscripts

ai:

Air inlet

comp:

Compressor

cond:

Condenser

evap:

Evaporator

FCC:

Fixed capacity compressor

m :

Mean

VCC:

Variable capacity compressor

References

  • Abd El-Baky, M. A., & Mohamed, M. M. (2007). Heat pipe heat exchanger for heat recovery in air conditioning. Applied Thermal Engineering, 27(4), 795–801.

    Article  Google Scholar 

  • Abdullah, H., Nitamakwuavan, S. & Jalaludin, A. F. (2011). Energy studies on central and variable refrigerant flow air-conditioning systems. 4th International Meeting of Advances in Thermofluids, IMAT 2011, Melaka, Malaysia; 3 October 2011–4 October 2011. AIP Conference Proceedings 2012, 1440,486–490.

  • Ahmadzadehtalatapeh, M. (2013). An air-conditioning system performance enhancement by using heat pipe based heat recovery technology. Scientia Iranica B, 20(2), 329–336.

    Google Scholar 

  • Alahmer, A., Abdelhamid, M., & Omar, M. (2012). Design of thermal sensational and comfort states in vehicles cabins. Applied Thermal Engineering, 36, 126–140.

    Article  Google Scholar 

  • Alkan, A., & Hosoz, M. (2010). Comparative performance of an automotive air conditioning system using fixed variable capacity compressors. International Journal of Refrigeration, 33(3), 487–495.

    Article  Google Scholar 

  • Aynur, T. N. (2010). Variable refrigerant flow systems: a review. Energy and Buildings, 42(7), 1106–1112.

    Article  Google Scholar 

  • Brown, J. S., Samuel, F. Y. M., & Domanski, P. A. (2002). Comparitive analysis of an automotive air conditioning systems operating with CO2 and R134a. International Journal of Refrigeration, 25, 19–32.

    Article  Google Scholar 

  • Chen, J., Zhao, Y., & Qi, Z. (2011). New developments in mobile air conditioning systems in China. Front. Energy, 5(1), 53–58.

    Article  Google Scholar 

  • Cho, H., Lee, H., & Park, C. (2013). Performance characteristics of an automobile air conditioning system with internal heat exchanger using refrigerant R1234yf. Applied Thermal Engineering, 61(2), 563–569.

    Article  Google Scholar 

  • Cordoba, J., Macias, M., & Manuel Espinosa, J. (1998). Study of the potential savings on energy demand and HVAC energy consumption by using coated glazing for office buildings in Madrid. Energy and Building, 27(1), 13–19.

    Article  Google Scholar 

  • Cuevas, C., Fonseca, N., & Lemort, V. (2012). Automotive electric scroll compressor: Testing and modeling. International Journal of Refrigeration, 35(4), 841–849.

    Article  Google Scholar 

  • Desai, A. D., Sapali, S. N., Parthasarathi, V. & Garikipati, V. (2011). Development of energy efficient R-134a eutomotive air conditioning system using internal heat exchanger. Proceedings of the World Congress on Engineering (WCE 2011), Vol. III. London. July 6–8, 2011.

  • Dieckmann, J. & Mallory, D. (1992). Variable speed compressor, HFC-134a based air conditioning system for electric vehicles. SAE Technical Paper. 920444.

  • Disawas, S., & Wongwises, S. (2004). Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. International Journal of Refrigeration, 27(6), 587–594.

    Article  Google Scholar 

  • Ekren, O., Celik, S., Noble, B., & Krauss, R. (2013). Performance evaluation of a variable speed DC compressor. International Journal of Refrigeration, 36(3), 745–757.

    Article  Google Scholar 

  • Farrington, R. B., & Rugh, J. (2000). Impact of vehicle air-conditioning on fuel economy, tailpipe emissions, and electric vehicle range. D.C.:Earth Technologies Forum Washington.

    Google Scholar 

  • Farrington, R. B., Rugh, J. P. & Barber, G. D. (2000). Effect of solar-reflective glazing on fuel economy, tailpipe emissions, and thermal comfort. SAE Technical Paper. 2000–01–2694.

  • Fischer, S. K. (1995). Comparison of global warming impacts of automobile air-conditioning concepts. Washington:1995 International CFC and Halons Alternative Conference.

    Google Scholar 

  • Fritsch, R. (1991). Automotive insulating glass—improvements in comfort. SAE Technical Paper. 910546.

  • Gasworth, S. & Tankala, T. (2011). Reduced steady state heating and air conditioning loads via reduced glazing thermal conductivity. SAE Technical Paper. 2011–01–0126.

  • Ghosh, D., Wang, M., Wolfe, E., Chen, K., Kaushik, S., & Han, T. (2013). Energy efficient HVAC system with spot cooling in an automobile—design and CFD analysis. SAE Int. J. Passeng. Cars - Mech. Syst., 5(2), 885–903.

    Article  Google Scholar 

  • Han, X. H., Li, P., Xu, Y. J., Zhang, Y. J., Wang, Q., & Chen, G. M. (2013). Cycle performances of the mixture of HFC-161 + HFC-134a as substitution of HFC-134a in automotive air conditioning system. International Journal of Refrigeration, 36, 913–920.

    Article  Google Scholar 

  • Han, Y., Liu, Y., Lia, M., & Huang, J. (2012). A review of development of micro-channel heat exchanger applied in air-conditioning system. Energy Procedia, 14, 148–153.

    Article  Google Scholar 

  • Hosoz, M., & Direk, M. (2006). Performance evaluation of an integrated automotive air conditioning and heat pump system. Energy Conversion and Management, 47(5), 545–559.

    Article  Google Scholar 

  • Huang, C. C. D. (1998). A dynamic computer simulation model for automobile passenger compartment climate control and evaluation. PhD Dissertation:Michigan Technologival University.

    Google Scholar 

  • Huang, K. D., Tzeng, S. C., Jeng, T. M., & Chiang, W. D. (2005). Air-conditioning system of an intelligent vehicle-cabin. Applied Energy, 83(6), 545–557.

    Article  Google Scholar 

  • Jensen, J. B., & Skogestad, S. (2007). Optimal operation of simple refrigeration cycles part 1: degrees of freedom and optiamality of subcooling. Computer and Chemical Engineering, 31, 712–721.

    Article  Google Scholar 

  • Johnson, V. H. (2002). Fuel used for vehicle air-conditioning: A state-by-state thermal comfort-based approach. SAE Technical Paper. 2002–01–1957.

  • Kahn Ribeiro, S., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., Lee, D. S., Muromachi, Y., Newton, P. J., Plotkin, S., Sperling, D., Wit, R. & Zhou, P. J. (2007). Transport and its Infrastructure. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)]. Cambridge, United Kingdom and New York, USA: Cambridge University Press.

  • Kairouani, L., Elakhdar, M., Nehdi, E., & Bouaziz, N. (2009). Use of ejectors in a multi-evaporator refrigeration system for performance enhancement. International Journal of Refrigeration, 32(6), 1173–1185.

    Article  Google Scholar 

  • Kaushik S, Chen K. H., Han T. & Khalighi B. (2011). Micro-cooling/heating strategy for energy efficient HVAC system. SAE Technical Paper. 2011–04–12.

  • Kaynakli, Ö., & Horuz, I. (2003). An experimental analysis of automotive air conditioning system. Int. Comm. Heat Mass Transfer, 30(2), 273–284.

    Article  Google Scholar 

  • Kazachki, G., & Hinde, D. (2006). Secondary coolant systems for supermarkets. ASHRAE Journal, 48(9), 34–46.

    Google Scholar 

  • Kim, M. H., Lee, S. Y., Mehendale, S. S., & Webb, R. L. (2003). Microchannel heat exchanger design for evaporator and condenser applications. Advances in Heat Transfer, 37, 297–429.

    Article  Google Scholar 

  • Klein, S. A., Reindl, D. T., & Brownell, K. (2000). Refrigeration system performance using liquid-suction heat exchangers. International Journal of Refrigeration, 23, 588–596.

    Article  Google Scholar 

  • Koh, J., Zhai, J. Z., & Rivas, J. A. (2009). Comparative energy analysis of VRF and VAV systems under cooling mode. In ASME 3rd international conference on energy sustainability, ES2009; San Francisco, United States, 19–23 July 2009, vol. 1 (pp. 411–418).

    Google Scholar 

  • Konz, M. (2007). A generic simulation of energy consumption of automobile air conditioning systems. M Tech Eng Thesis:Nelson Mandela Metropolitan University.

    Google Scholar 

  • Kwon, L., Hwanga, Y., Radermachera, R., & Kim, B. (2012a). Field performance measurements of a VRF system with sub-cooler in educational offices for the cooling season. Energy and Buildings, 49, 300–305.

    Article  Google Scholar 

  • Kwon, C., Lee, C., Foster, L. & Kwon, J. (2012b). Development of an energy-saving occupied-zone HVAC system (OZ HVAC). SAE Technical Paper 2012–01–0320.

  • Lawrance, N., & Elbel, S. (2014). Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf. International Journal of Refrigerant, 38, 310–322.

    Article  Google Scholar 

  • Lee, G. H., & Yoo, J. Y. (2000). Performance analysis and simulation of automobile air conditioning system. International Journal of Refrigerant, 23(3), 143–254.

    Google Scholar 

  • Lee, J. S., Kim, M. S., & Kim, M. S. (2011). Experimental study on the improvement of a CO2 air conditioning system performance using an ejector. International Journal of Refrigeration, 34, 1614–1625.

    Article  Google Scholar 

  • Lee, J. S., Kim, M. S., & Kim, M. S. (2014). Studies on the performance of a CO2 air conditioning system using an ejector as an expansion device. International Journal of Refrigeration, 38, 140–152.

    Article  Google Scholar 

  • Li, G. (2015). Comprehensive investigations of life cycle climate performance of packaged air source heat pumps for residential application. Renewable & Sustainable Energy Reviews, 43, 702–710.

    Article  Google Scholar 

  • Li, G., Alabdulkarem A., Hwang, Y., Radermacher, R. (2014a). Drop in life cycle climate performance of low GWP R-410A alternatives for heat pumps. 11th IIR-Gustav Lorentzen Conference ON Natural Refrigerants – GL2014.

  • Li, G., Eisele, M., Lee, H., Hwang, Y., & Radermacher, R. (2014b). Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants. Energy, 68, 819–831.

    Article  Google Scholar 

  • Li, X., Chen, J., Chen, Z., Liu, W., Hu, W., & Liu, X. (2004). A new method for controlling flow in automobile air conditioning. Applied Thermal Engineering, 24(7), 1073–1085.

    Article  Google Scholar 

  • Lin, J. L., & Yeh, T. J. (2009). Control of multi-evaporator air-conditioning systems for flow distribution. Energy Conversion and Management, 50(6), 1529–1541.

    Article  Google Scholar 

  • Liu, X., & Hong, T. (2010). Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems. Energy and Buildings, 42(5), 584–589.

    Article  Google Scholar 

  • Lui, J., Chen, J., Ye, Q., & Chen, Z. (2007). A new model for depicting mass flow rate characteristic of electronic expansion valves. Experimental Thermal and Fluid Science, 32(1), 214–219.

    Article  Google Scholar 

  • Mansour, M. K., Musa, M. N., Wan Hassan, M. N., & Saqr, K. M. (2008). Development of novel control strategy for multiple circuit roof top bus air conditioning system in hot humid countries. Energy Conversion and Management, 49(6), 1455–1468.

    Article  Google Scholar 

  • Meyer, J. J., Southwood, J. & Chan, M. (2003). Energy efficient thermal vehicle for reduced climate system load. Vehicle Thermal Management Systems, VTMS 6, Brighton, United Kingdom. 18 May 2003–21 May 2003, 149–157.

  • Mitsui, M. (1987). Improvement of refrigerant flow control method in automotive air conditioners. SAE Technical Paper. 870029.

  • Murakami, H., Kataoka, H., Honda, Y., Morimoto, S., & Takeda, Y. (2001). Highly efficient brushless motor design for an air-conditioner of the next generation 42 V vehicle, industry applications conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the IEEE, 2001(1), 461–466.

    Google Scholar 

  • Ooi, K. T. (2005). Design optimization of a rolling piston compressor for refrigerators. Applied Thermal Engineering, 25(5–6), 813–829.

    Article  Google Scholar 

  • Park, C. Y., & Hrnjak, P. (2008). Experimental and numerical study on microchannel and round-tube condensers in a R410A residential air-conditioning system. International Journal of Refrigeration, 31(5), 822–831.

    Article  Google Scholar 

  • Park, S. K., Kim, H., Ahn, H. & Park, H. S. (2006). Study on the reduction of fuel consumption in the A/C system, used variable displacement swash-plate compressor and the performance improvement by field test. SAE Technical Paper. 2006–01–0164.

  • Pottker, G., & Hrnjak, P. (2015). Experimental investigation of the effect of condenser sub-cooling in R134a and R1234yf air conditioning systems with and without internal heat exchanger. International Journal of Refrigerant, 50, 104–113.

    Article  Google Scholar 

  • Qi, Z. (2013). Experimental study on evaporator performance in mobile air conditioning system using HFO-1234yf as working fluid. Applied Thermal Engineering, 53, 124–130.

    Article  Google Scholar 

  • Qi, Z., Chen, J., Chen, Z., Hu, W., & He, B. (2007). Experimental study of an auto-controlled automotive air conditioning system with an eternally-controlled variable displacement compressor. Applied Thermal Engineering, 27, 927–933.

    Article  Google Scholar 

  • Qi, Z., Zhao, Y., & Chen, J. (2010). Performance enhancement study of mobile air conditioning system using micro-channel heat exchangers. International Journal of Refrigeration, 33(2), 301–312.

    Article  Google Scholar 

  • Ribeiro, G. B., Barbosa Jr., J. R., & Prata, A. T. (2012). Performance of microchannel condensers with metal foams on the air-side: application in small-scale refrigeration systems. Applied Thermal Engineering, 36, 152–160.

    Article  Google Scholar 

  • Roscher, M. A., Leidholdt, W., & Trepte, J. (2012). High efficiency energy management in BEV applications. Electrical Power and Energy Systems, 37(1), 126–130.

    Article  Google Scholar 

  • Saiz Jabardo, J. M., Gonzales Mamani, W., & Ianella, M. R. (2002). Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor. International Journal of Refrigerant, 25(8), 1157–1172.

    Article  Google Scholar 

  • Sand, J. R. & Fischer, S. K. (1997). Total environmental warming impact (TEWI) calculations for alternative automotive air-conditioning systems. 1997 SAE International Congress. Detroit.

  • Shen, B., Su, Z. & Wang, Y. (2000). Research on characteristic of double-evaporator in VRV air conditioner. International Refrigerant and Air Conditioning Conference 2000, paper 475.

  • Sukri, M. F., Salim, M. A., Mohd Rosli, M. A., Azraai, S., & Mat Dan, R. (2012). An analytical investigation of overall thermal transfer value on commercial building in Malaysia. International Review of Mechanical Engineering, 6(5), 1050–1056.

    Google Scholar 

  • Sumeru, K., Nasution, H., & Ani, F. N. (2012). A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle. Renewable and Sustainable Energy Reviews, 16(7), 4927–4937.

    Article  Google Scholar 

  • Sumeru, K., Sulaimon, S., Nasution, H., & Ani, F. N. (2014). Numerical and experimental study of an ejector as an expansion device in split-type air conditioner for energy savings. Energy and Buildings, 79, 98–105.

    Article  Google Scholar 

  • Tan, K. M., & Ooi, K. T. (2011). A novel revolving vane compressor with a fixed-vane. International Journal of Refrigeration, 34(8), 1980–1988.

    Article  Google Scholar 

  • Teh, Y. L., & Ooi, K. T. (2009a). Theoretical study of a novel refrigeration compressor—part I: design of the revolving vane (RV) compressor and its frictional losses. International Journal of Refrigeration, 32(5), 1092–1102.

    Article  Google Scholar 

  • Teh, Y. L., & Ooi, K. T. (2009b). Theoretical study of a novel refrigeration compressor—part II: performance of a rotating discharge valve in the revolving vane (RV) compressor. International Journal of Refrigeration, 32(5), 1103–1111.

    Article  Google Scholar 

  • Teh, Y. L., & Ooi, K. T. (2009c). Theoretical study of a novel refrigeration compressor—part III: leakage loss of the revolving vane (RV) compressor and a comparison with that of the rolling piston type. International Journal of Refrigeration, 32, 945–920.

    Article  Google Scholar 

  • Teh, Y. L., & Ooi, K. T. (2009d). Experimental study of the revolving vane (RV) compressor. Applied Thermal Engineering, 29(14–15), 3235–3245.

    Article  Google Scholar 

  • Tian, C., Dou, C., Yang, X., & Li, X. (2005). Instability of automotive air conditioning system with a variable displacement compressor. Part 1. Experimental investigation. International Journal of Refrigeration, 28(7), 1102–1110.

    Article  Google Scholar 

  • Thornton, J. W., Klein, S. A., & Mitchell, J. W. (1994). Dedicated mechanical subcoolmg design strategies for supermarket applications. International Journal of Refrigeration, 17(8), 508–515.

    Article  Google Scholar 

  • Tamura, T., Yakumaru, Y., & Nishiwaki, F. (2005). Experimental study on automotive cooling and heating air conditioning system using CO2 as a refrigerant. International Journal of Refrigeration, 28, 1302–1307.

    Article  Google Scholar 

  • Türler, D., Hopkins, D. & Goudey, H. (2003). Reducing vehicle auxiliary loads using advanced thermal insulation and window technologies. SAE Technical Paper. 2003–01–1076.

  • Umezu, K. (2010). Air-conditioning system for electric vehicles (i-MiEV). SAE Automotive Refrigerant & System Efficiency Symposium.

  • Wang, K., Eisele, M., Hwang, Y., & Radermacher, R. (2010a). Review of secondary loop refrigeration systems. International Journal of Refrigeration, 33, 212–234.

    Article  Google Scholar 

  • Wang, S., Gu, J., Dickson, T., Dexter, J., & McGregor, I. (2005). Vapor quality and performance of an automotive air conditioning system. Experimental Thermal and Fluid Science, 30, 59–66.

    Article  Google Scholar 

  • Wang, Z., Xu, Z., Gao, F. & Rui, S. (2010b). Experimental study on flow characteristics of the electronic expansion valve with variable condition. Power and Energy Engineering Conference (APPEEC) 2010 Asia-Pacific, Chengdu, 28–31 March 2010, 1–4.

  • Wongwises, S, Kamboon, A. & Orachon, B. (2006). Experimental investigation of hydrocarbon mixture to replace HFC-134a in an automotive air conditioning system. Energy Conversion and Management, 47, 1644–1659.

    Article  Google Scholar 

  • Wu, C., Xingxi, Z., & Shiming, D. (2005). Development of control method and dynamic model for multi-evaporator air conditioners (MEAC). Energy Conversion and Management, 46(3), 451–465.

    Article  Google Scholar 

  • Wu, M., Yuan, X. R., Xu, Y. J., Qiao, X. G., Han, X. H., & Chen, G. M. (2014). Cycle performance study of ethyl fluoride in the refrigerant system of HFC-134a. Applied Energy, 136, 1004–1009.

    Article  Google Scholar 

  • Yan, J., Cai, W., Zhao, L., Li, Y., & Lin, C. (2013). Performance evaluation of a combined ejector-vapor compression cycle. Renewable Energy, 55, 331–337.

    Article  Google Scholar 

  • Yan, P., Xiangguo, X., Liang, X., & Shiming, D. (2012). A modeling study on the effects of refrigerant pipeline length on the operational performance of a dual-evaporator air conditioning system. Applied Thermal Engineering, 39, 15–25.

    Article  Google Scholar 

  • Yang, M. H., & Yeh, R. H. (2015). Performance and exergy destruction analyses of optimal subcooling for vapor-compression refrigeration systems. International Journal of Heat and Mass Transfer, 87, 1–10.

    Article  Google Scholar 

  • Yu, R., Sommers, A. D., & Okamoto, N. C. (2013). Effect of a micro-grooved fin surface design on the air-side thermal-hydraulic performance of a plain fin-and-tube heat exchanger. International Journal of Refrigeration, 36(3), 1078–1089.

    Article  Google Scholar 

  • Zhang, H., Dai, L., Xu, G., Li, Y., Chen, W., & Tao, W. (2009). Studies of air-flow and temperature fields inside a passenger compartment for improving thermal comfort and energy saving. Part 1: test/numerical model and validation. Applied Thermal Engineering, 29(10), 2022–2027.

    Article  Google Scholar 

  • Zhao, Y. P., Wu, J. Y., Wang, R. Z., & Shiochi, S. (2007). Energy simulation in the variable refrigerant flow air-conditioning system under cooling conditions. Energy and Buildings, 39(2), 212–220.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Universiti Teknologi Malaysia, Ministry of Education Malaysia, and Universiti Teknikal Malaysia Melaka in providing a platform for research activities in terms of funding (Project No. Q.J130000.2424.00G41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Sukri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukri, M.F., Musa, M.N., Senawi, M.Y. et al. Achieving a better energy-efficient automotive air-conditioning system: a review of potential technologies and strategies for vapor compression refrigeration cycle. Energy Efficiency 8, 1201–1229 (2015). https://doi.org/10.1007/s12053-015-9389-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-015-9389-4

Keywords

Navigation