Conceptual change in children's naive biology has been studied over the years. Biological thinking emerges as an autonomous domain of theorizing during childhood, although a disagreement exists on how autonomous it is (Carey 1985; Keil 1992; Springer 1999). This conceptual change seems to consist of spontaneous conceptual change, which takes place during development due to maturity and independently of any instruction, and instruction-based conceptual change, that is due to particular teaching interventions that aim at promoting conceptual change. It is difficult to distinguish between these two types of conceptual change during elementary school, and whatever is happening is probably the outcome of both maturity and schooling (Inagaki and Hatano 2002, p.153–154). However, in the case of intuitive teleology such a distinction may be possible, not only because elementary instruction does not explicitly address children's teleological intuitions and preconceptions, but also because children are often implicitly driven to an enhancement of these intuitions. For example, many popular wildlife and nature programs seem to present evolution in teleological terms, because they often present organisms as perfectly designed in order to survive (Aldridge and Dingwall 2003). Consequently, children are not expected to undergo any spontaneous conceptual change from teleological to non-teleological intuitions, as even adults tend to intuitively provide teleological explanations as well (e.g., Kelemen and Rosset 2009).
Our results indicate a conceptual shift from non-selective to selective teleology during the ages of five to seven years old. Of course, these results are not conclusive; a longitudinal study would be required to confirm such a shift. Overall, it seems that pre-school children apply teleology in a non-selective manner. This does not only have to do with the item type (organism, artifact, or natural object), but also with the particular feature explained (color or shape). On one hand, pre-school children provided teleological explanations for all item types (though more for organisms and artifacts), both for the color and for the shape (though more for the shape). On the other hand, second-grade children provided less teleological explanations, mostly for organisms and artifacts and mostly for the shape. The number of teleological explanations of the first-grade children was intermediate between those of the pre-school and the second-grade group children. These results suggest that there may be a shift in how selectively teleological explanations are applied during the ages five to seven years old.
The results of our study suggest that both Keil and Kelemen could have made correct conclusions for particular ages, if Kelemen's studies had mostly involved pre-school children (four to five years old) exhibiting a less selective teleology, and if Keil's studies had mostly involved older children (six to seven years old) exhibiting a selective teleology. However, this was not the case; both researchers included children of various ages in their studies. In what follows, we propose a research program that might contribute to a better understanding of children's teleological intuitions and of how these might change during development. The proposed research program has the following objectives: (1) to document students' teleological explanations and analyze the preconceptions on which they are based, (2) to study whether these preconceptions and the intuitions that generate them change during the normal course of development, and (3) to investigate whether particular interventions can challenge these preconceptions and promote conceptual change.
No longitudinal study has ever been performed in order to study children's teleological explanations. Thus, a developmental view can so far only be inferred by accumulating the conclusions of independent bodies of research (e.g., Evans 2008). In order to provide an in-depth analysis of elementary students' teleological intuitions from a developmental perspective, we suggest that a four-year longitudinal study is necessary (kindergarten to grade three; grade one to grade four; grade two to grade five; grade three to grade six). A proposed research design is summarized in Table 4. All tests (pre-tests, intermediate tests, post-tests) should be performed with semi-structured interviews.
Table 4 A summary of the research design As already discussed above, studies with preschool and elementary children have shown that they tend to provide teleological explanations for the features of organisms and artifacts, and in some cases of natural objects, from a very early age (three to four years old). Two distinct bodies of research, by Keil and Kelemen, have led to different results and conclusions about children's teleological intuitions. The first aim of the proposed research is to clarify whether teleology is applied selectively for organisms and artifacts, or if it is generally applied to (non-living) natural objects as well. We anticipate that the pre-tests which will be performed in year one of the proposed study will provide evidence in support of one of the two competing theories about the type of children's teleological intuitions (selective or non-selective). For this purpose, all pre-tests will include two types of questions that will explicitly ask students why some organisms, artifacts, and natural objects have particular features, whether these features serve some function or role and how these features have come into existence. As shown in Table 4, from year three onwards, all pre-tests performed at the beginning of each school year will also serve as retention tests for the interventions performed the year before. The main two types of questions are similar to those used in the study reported in this article. These questions will have the form “Why does it have this feature?” and “Is this feature useful for something?” As already explained above, a student who would provide an “In order to” explanation to a “Why?” question and then would describe why the respective feature was useful, would have expressed his teleological intuitions both implicitly and explicitly.
We follow White and Arzi in defining a longitudinal study as “… one in which two or more measures or observations of a comparable form are made of the same individuals or entities over a period of at least one year” (2005, p.138). Such studies have the advantage that a particular group of students can be studied over long periods of time. Longitudinal studies are difficult to conduct, however, contrary to short-term studies, they can uncover how conceptual development related to learning and understanding science occurs. Actual learning takes time, and its outcomes may not be evident in an immediate post-test. Consequently, a longitudinal study that allows the comparison of the same students at various ages may provide a detailed and accurate account of the various factors that affect learning (White and Arzi 2005). Of course, development involves multivariate changes that may not be easy to assess (Ferrer and McArdle 2010), but nevertheless this is the only way to understand how intuitions and biases develop.
For the proposed study, we suggest a true experimental design, according to Campbell and Stanley (1963). Students of each grade will be randomly divided into classes. Approximately 1/3 of them should be the experimental group and approximately 2/3 of them should be the control group. The latter will undergo the “normal” conceptual development, i.e., the development that would take place without any particular teaching intervention that would address students' teleological intuitions. Thus, the study of the explanations given by students of the control group over the course of four years would allow documentation of whether any particular conceptual shifts related to teleology take place during the elementary years. This would provide an outline of the “normal” conceptual development--related to teleology--to which the experimental group will be compared. In this way, the effectiveness of teaching interventions that address teleological intuitions can be properly assessed.
Evans (2008) has concluded that a conceptual shift takes place around eight years old as five to seven year olds provide different explanations for the origin of species compared to eight to ten year olds. This shift is expected to take place in grade three, and the proposed research design will allow the longitudinal study of four consecutive “grade three” groups of students from year two to year five. Moreover, the particular research design will probably allow documentation of whether the particular conceptual shift takes place earlier (in grade two) or later (in grade four). Of course, we anticipate that by performing a pre-test, an intermediate test after the first teaching intervention, and a post-test after the second teaching intervention (see Table 2) it will be possible to document any conceptual shift taking place in any of the grades one to five. Another advantage of the proposed research design, besides the fact that it allows the longitudinal study of four groups for four years that is expected to provide a thorough understanding of the conceptual development related to teleology, is that it also allows comparisons between different groups of students of the same age. Thus, it would be possible to compare two groups of kindergarten students (years one and two), three groups of grade one students (years one to three), four groups of grade two students (years one to four), four groups of grade three students (years two to five), three groups of grade four students (years three to five), and two groups of grade five students (years four to five) (see Table 4). By doing this, it would be possible to know which of the concepts and conceptual shifts documented are representative of students of each age, and consequently characteristic of each age, and which are simply documented in particular groups of students. In short, by studying longitudinally four groups of students for four years, a large number of students of each grade would have been studied, and this would provide an outline of conceptual development based on a large sample.
One important issue is where such a study may be conducted. White and Arzi (2005) note that random selection is rarely possible in educational research, and that usually researchers have to work with whomever they can get. Students should be allocated to classes randomly in order to have balanced groups. Moreover, a longitudinal study requires commitment from the subjects of the research for a long period. Thus, a large group of students is required so that even if some students eventually leave—what Campbell and Stanley (1963) have termed selective mortality—there will be no serious problem for the study. The existence of the control group will help deal with two other problems recognized by Campbell and Stanley as affecting the validity of a study: history and maturation. The term history refers to anything that happens alongside the intervention that might affect the outcome of a study--like a documentary film or a visit to the museum. The term maturation refers to the improvement in students' performance that takes place not because of the intervention but just because they grew up. By performing the same test to both an experimental and a control group simultaneously, we expect to eliminate the foregoing factors that might affect the validity of the conclusions.
The teaching interventions that will be performed in the various grades should aim at helping students realize that their teleological explanations do not work in nature. To achieve this, there are two main prerequisites: (1) the abandonment of teleological language and its elimination from any educational material and (2) the proper understanding that organisms are neither perfect, nor designed. If these are done consistently and repeatedly in elementary science instruction, students might realize the error of their initial teleological explanations about organisms are wrong. The abandonment of teleological language during biology instruction in elementary school is a first crucial step. Even in biology textbooks one can find expressions like “Birds have wings for flying.” And if a teacher asked “Why do birds have wings?” the most probable answer students would give would be “for flying.” We suggest that elementary students can be brought to conflict situations which might help them realize that there are no simple answers to such questions. For example, when students reply that wings are for flying, the teacher could argue that wings are also for swimming, as penguins use them in order to swim and not to fly. The teacher could also remind students that ostriches neither fly nor swim and still possess wings. Such examples might drive students to reconsider their own ideas. It is important for teachers to make their students understand that a “Why?” question differs significantly from a “What for?” question. The “What for?” question presupposes that a purpose exists and thus the question requires a teleological explanation. The “Why?” question is free from this assumption, although it can be given a teleological explanation as well. Hence, teachers should not tell their students that “Birds have wings for flying” but that “Birds fly because they have wings.” Airplanes have wings for flying; but contrary to birds, airplanes are artifacts intentionally designed for this purpose.
A second crucial step would be to help elementary students understand that organisms often lack features which are necessary for their survival. Thus, while one could claim that whales have their hydrodynamic shapes in order to swim fast in the sea, he could not explain why they do not also have gills which unquestionably are useful for underwater breathing. It is more appropriate to say that “Whales swim fast in the sea because they have a hydrodynamic shape.” But it is also the case that whales have to swim up to the surface in order to breathe and that “Whales do not have gills in order to be able to swim underwater” as many species that live in the sea do. It is important that students realize that in many cases and aspects organisms are not perfect. Biology instruction should not only focus on useful features but also on useless or even disadvantageous ones. These reflect the evolutionary past of the various species; and new species emerge from natural processes of change. New species evolve from preexisting ones and are not formed anew. Consequently, they preserve features of their ancestors, no matter if these are useful or not. Evolutionary history is important for understanding the origin of features (Kampourakis 2011).
In Table 5, we present an overview of possible teaching interventions. These interventions will involve only those students belonging to the experimental group. It should be noted that students should not only study examples of animals but also of plants. In addition, examples from astronomy (planets and solar system) would be useful as well since students also tend to provide teleological explanations about the properties of planetary bodies.
Table 5 The teaching interventions that will be performed in each grade To summarize, the proposed research may make some useful contributions. First, the teaching of evolution, a crucial issue in science education, is addressed from a different (developmental–psychological and not political) perspective, with a focus on a different age group than usual (elementary rather than secondary or post-secondary). In addition, elementary students' preconceptions (those related to teleology in particular and not about evolution in general) will be documented and will serve as the basis for the design of specific teaching interventions that will aim to challenge them. Possible conceptual shifts related to teleology that elementary students undergo spontaneously in the normal course of development may be documented during a study of a kind that has never been performed in the past: four groups of students of different Grades will be studied simultaneously and longitudinally for four years. The possibility of promoting instruction-based conceptual change related to teleology will also be investigated by studying an experimental group and comparing it to the control group of the same age, attending the same grades at the same time.
With the proposed research program, a new perspective will be added to the evolution debates. People who oppose evolution may reject it not only because they feel that it is incompatible with their worldviews but also because they do not understand it. The perceived conflict may not only be between evolution and religious views but also between evolution and their teleological view of nature. The proposed research programme may also provide a framework for challenging children's teleological intuitions during elementary school. This might provide fertile ground for evolution instruction in secondary and post-secondary settings, but it will not be investigated in the proposed research project. However, if it were shown that children's teleological intuitions can be effectively challenged at some particular age in their conceptual development, policy makers and curriculum developers should reconsider how evolution is currently taught in schools.