Skip to main content
Log in

Effect of transient flow and pseudo-static forces on the lateral earth pressures developed in retained unsaturated backfills

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This article primarily investigates the effect of transient flow and seismic loadings on the active and passive earth pressures developed in retained unsaturated backfills. The classical Rankine’s earth pressure theory for saturated soils is duly modified to account for the dynamic loadings and the partial saturation state of the soil under transient infiltration. The influence of the matric suction on the water content and flow rate is apprehended by incorporating a suitable soil water characteristics curve and a hydraulic conductivity function. The suction stress-based effective stress formulation is adopted for the purpose of analysis. The one-dimensional Richards' equation models the transient water flow in the vadose zone. The seismic loading is idealized as a statically applied inertial force by using the pseudo-static method. A comprehensive parametric study is carried out to investigate the impact of soil strength properties, hydromechanical parameters, seismic loading conditions, and flow behaviour (rate and duration) of the transient infiltration on the two failure states -- active and passive. The tension crack depths in the vadose zone under transient flow conditions are also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Coulomb C A 1776 Essai sur une application des regles des Maximis et Minimis a quelques problemes de Statique relatifs a l'Architecture. Memoirs Academie Royal Pres. Division Sav. 7, Paris, France (in French)

  2. Rankine W J M 1857 On the stability of loose earth. Philos. Trans. R. Soc. London 147: 9–27

    Article  Google Scholar 

  3. Pufahl D E, Fredlund D G and Rahardjo H 1983 Lateral earth pressures in expansive clay soils. Can. Geotech. J. 20(2): 228–241

    Article  Google Scholar 

  4. Lu N and Likos W J 2004 Unsaturated soil mechanics. Wiley, Hoboken

    Google Scholar 

  5. Lu N, Godt J W and Wu D T 2010 A closed-form equation for effective stress in unsaturated soil. Water Resour. Res. 46(5): 1–14

    Article  Google Scholar 

  6. Zhang C, Zhao J H, Zhang Q H and Xu F 2010 Unified solutions for unsaturated soil shear strength and active earth pressure. In: Experimental and Applied Modeling of Unsaturated Soils, pp. 218-224

  7. Liang W B, Zhao J H, Li Y, Zhang C G and Wang S 2012 Unified solution of Coulomb’s active earth pressure for unsaturated soils without crack. Appl. Mech. Mater. 170: 755–761

    Article  Google Scholar 

  8. Vahedifard F, Leshchinsky B A, Mortezaei K and Lu N 2015 Active earth pressures for unsaturated retaining structures. J. Geotech. Geoenviron. Eng. ASCE 141(11): 04015048

    Article  Google Scholar 

  9. Sahoo J P and Ganesh R 2017 Active earth pressure on retaining walls with unsaturated soil backfill. In: International congress and exhibition sustainable civil infrastructures: Innovative infrastructure geotechnology Springer, Cham, pp 1–19

    Google Scholar 

  10. Deng B and Yang M 2019 Analysis of passive earth pressure for unsaturated retaining structures. Int. J. Geomech., ASCE 19(12): 06019016

    Article  Google Scholar 

  11. Abdollahi M, Vahedifard F, Abed M and Leshchinsky B A 2021 Effect of tension crack formation on active earth pressure encountered in unsaturated retaining wall backfills. J. Geotech. Geoenviron. Eng., ASCE 147(2): 06020028

    Article  Google Scholar 

  12. Zhao L H, Luo Q, Li L, Yang F and Yang X L 2009 The upper bound calculation of passive earth pressure based on shear strength theory of unsaturated soil. In: Slope Stability, Retaining Walls, and Foundations: Selected Papers from the 2009 GeoHunan International Conference, pp. 151–157

  13. Stanier S and Tarantino A 2010 Active earth force in cohesionless unsaturated soils using bound theorems of plasticity. In: Proceedings of 5th International Conference on Unsaturated Soils, Barcelona, pp. 1081-1086

  14. Bestun S, Delage P, Cui Y J, Ghabezloo S, Pereira J M and Tang A M 2016 Analysis of passive earth thrust in an unsaturated sandy soil using discontinuity layout optimization. E3S Web Conf. 9: 08018. https://doi.org/10.1051/e3sconf/20160908018

    Article  Google Scholar 

  15. Li Z W and Yang X L 2018 Active earth pressure for soils with tension cracks under steady unsaturated flow conditions. Can. Geotech. J. 55(12): 1850–1859

    Article  Google Scholar 

  16. Fathipour H, Siahmazgi A S, Payan M and Chenari R J 2020 Evaluation of the lateral earth pressure in unsaturated soils with finite element limit analysis using second-order cone programming. Comput. Geotech. 125: 103587

    Article  Google Scholar 

  17. Griffiths D V and Lu N 2005 Unsaturated slope stability analysis with steady infiltration or evaporation using elasto-plastic finite elements. Int. J. Numer. Anal. Meth. Geomech. 29(3): 249–267

    Article  MATH  Google Scholar 

  18. Yeh T C J 1989 One-dimensional steady-state infiltration in heterogeneous soils. Water Resour. Res. 25(10): 2149–2158

    Article  Google Scholar 

  19. Srivastava R and Yeh T C J 1991 Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. 27(5): 753–762

    Article  Google Scholar 

  20. Lu N and Godt J W 2013 Hillslope hydrology and stability. Cambridge University Press, New York, pp 1–430

    Book  Google Scholar 

  21. Shahrokhabadi S, Vahedifard F, Ghazanfari E and Foroutan M 2019 Earth pressure profiles in unsaturated soils under transient flow. Eng. Geol. 260: 105218

    Article  Google Scholar 

  22. Zhang X, Alonso E E and Casini F 2016 Explicit formulation of at-rest coefficient and its role in calibrating elasto-plastic models for unsaturated soils. Comput. Geotech. 71: 56–68

    Article  Google Scholar 

  23. Vahedifard F, Tehrani F S, Galavi V, Ragno E and AghaKouchak A 2017 Resilience of MSE walls with marginal backfill under a changing climate: Quantitative assessment for extreme precipitation events. J. Geotech. Geoenviron. Eng., ASCE 143(9): 04017056

    Article  Google Scholar 

  24. Yang K H, Thuo J N, Chen J W and Liu C N 2019 Failure investigation of a geosynthetic-reinforced soil slope subjected to rainfall. Geosynth. Int. 26(1): 42–65

    Article  Google Scholar 

  25. Gardner W R 1958 Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85(4): 228–232

    Article  Google Scholar 

  26. Lu N and Likos W J 2006 Suction stress characteristic curve for unsaturated soil. J. Geotech. Geoenviron. Eng., ASCE 132(2): 131–142

    Article  Google Scholar 

  27. Bishop A W 1959 The principle of effective stress. Teknisk ukeblad 39: 859–863

    Google Scholar 

  28. Richards L A 1931 Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1(5): 318–333

    MATH  Google Scholar 

  29. Jahangir M H, Soleymani H and Sadeghi S 2017 Evaluation of unsaturated layer effect on seismic analysis of unbraced sheet pile wall. Open J. Mar. Sci. 7(02): 300–316

    Article  Google Scholar 

  30. Mononobe N 1929 Earthquake-proof construction of masonry dams. In: Proceedings of the World Engeering. Conference, 9, pp. 275

Download references

Acknowledgement

The corresponding author acknowledges the support of “Science and Engineering Research Board (SERB), Government of India’’ under grant number SRG/2019/000149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manash Chakraborty.

Appendices

Appendix A

1.1 A.1 Deriving the governing differential equation

$$ {\text{Richards}}^{\prime}\;{\text{ equation}}:\;\frac{\partial }{\partial z}\left[ {k\left( {h_{m} } \right)\left( {\frac{{\partial h_{m} }}{\partial z} + 1} \right)} \right] = \frac{\partial \theta }{{\partial t}} $$
(A.1)
$$ {\text{Gardener}}^{\prime}{\text{s }}\;{\text{one}} - {\text{parameter}}\;{\text{ HCF }}\;{\text{model}}:k = k_{s} \exp \left( {\alpha h_{m} } \right) $$
(A.2)
$$ {\text{Gardener}}^{\prime}{\text{s}}\;{\text{SWCC}}\;{\text{model}}:\Theta_{n} = S_{e} = \frac{{\theta - \theta_{r} }}{{\theta_{s} - \theta_{r} }} = \exp \left( {\alpha h_{m} } \right) $$
(A.3)

Eq. (A.3) can be further simplified as follows:

$$ \theta = \theta_{r} + \left( {\theta_{s} - \theta_{r} } \right)\exp \left( {\alpha h_{m} } \right) $$
(A.4)

Performing partial differentiation of Eq. (A.4) with respect to time (t), the following expression can be obtained:

$$ \frac{\partial \theta }{{\partial t}} = \alpha \left( {\theta_{s} - \theta_{r} } \right)\exp \left( {\alpha h_{m} } \right)\frac{{\partial h{}_{m}}}{\partial t} $$
(A.5)

Substituting Eq. (A.2) and Eq. (A.5) into Eq. (A.1), the following differential equation can be obtained:

$$ k_{s} \left[ {\exp \left( {\alpha h_{m} } \right)\frac{{\partial^{2} h_{m} }}{{\partial z^{2} }} + \alpha \exp \left( {\alpha h_{m} } \right)\left( {\frac{{\partial h_{m} }}{\partial z}} \right)^{2} } \right] + \alpha k_{s} \exp \left( {\alpha h_{m} } \right)\frac{{\partial h_{m} }}{\partial z} = \alpha \left( {\theta_{s} - \theta_{r} } \right)\exp \left( {\alpha h_{m} } \right)\frac{{\partial h{}_{m}}}{\partial t} $$
(A.6)
$$ \Rightarrow k_{s} \exp \left( {\alpha h_{m} } \right)\left[ {\left\{ {\frac{{\partial^{2} h_{m} }}{{\partial z^{2} }} + \alpha \left( {\frac{{\partial h_{m} }}{\partial z}} \right)^{2} } \right\} + \alpha \frac{{\partial h_{m} }}{\partial z}} \right] = \alpha \left( {\theta_{s} - \theta_{r} } \right)\exp \left( {\alpha h_{m} } \right)\frac{{\partial h{}_{m}}}{\partial t} $$
(A.7)
$$ \Rightarrow \left[ {\frac{{\partial^{2} h_{m} }}{{\partial z^{2} }} + \alpha \left( {\frac{{\partial h_{m} }}{\partial z}} \right)^{2} } \right] + \alpha \frac{{\partial h_{m} }}{\partial z} = \frac{{\alpha \left( {\theta_{s} - \theta_{r} } \right)}}{{k_{s} }}\frac{{\partial h_{m} }}{\partial t} $$
(A.8)

A.2 Numerical Scheme for solving the IVP

$$ {\text{GD}}\;{\text{ SWCC}}:\left[ {\frac{{\partial^{2} h_{m} }}{{\partial z^{2} }} + \alpha \left( {\frac{{\partial h_{m} }}{\partial z}} \right)^{2} } \right] + \alpha \frac{{\partial h_{m} }}{\partial z} = \lambda \frac{{\partial h_{m} }}{\partial t};\;\lambda = \frac{{\alpha \left( {\theta_{s} - \theta_{r} } \right)}}{{k_{s} }} $$
$$ \left[ {(1 - \theta )\left. {\frac{{\partial^{2} h_{m} }}{{\partial z^{2} }}} \right|_{t + \Delta t} + \left. {\theta \frac{{\partial^{2} h_{m} }}{{\partial z^{2} }}} \right|_{t} + \alpha \left( {\left. {\frac{{\partial h_{m} }}{\partial z}} \right|_{t} } \right)^{2} } \right] + \alpha \left. {\frac{{\partial h_{m} }}{\partial z}} \right|_{t} = \lambda \frac{{\partial h_{m} }}{\partial t} $$
(A.9)

In terms of Crank-Nicolson finite difference terms (θ =0.5), the generalized equations for any arbitrary ith node can be written as:

$$ \left[ {\frac{{h_{m,i - 1}^{t + \Delta t} - 2h_{m,i}^{t + \Delta t} + h_{m,i + 1}^{t + \Delta t} }}{{2\Delta z^{2} }} + \frac{{h_{m,i - 1}^{t} - 2h_{m,i}^{t} + h_{m,i + 1}^{t} }}{{2\Delta z^{2} }} + \alpha \left[ {\frac{{h_{m,i + 1}^{t} - h_{m,i}^{t} }}{\Delta z}} \right]^{2} } \right] + \alpha \left[ {\frac{{h_{m,i + 1}^{t + \Delta t} - h_{m,i}^{t + \Delta t} }}{\Delta z}} \right] = \lambda \frac{{h_{m,i}^{t + \Delta t} - h_{m,i}^{t} }}{\Delta t} $$
(A.10)
$$ \begin{aligned} \Rightarrow & - m_{1} h_{m,i - 1}^{t + \Delta t} + \left( {1 + 2m_{1} + m_{2} } \right)h_{m,i}^{t + \Delta t} - \left( {m_{1} + m_{2} } \right)h_{m,i + 1}^{t + \Delta t} = h_{m,i}^{t} + m_{1} \left( {h_{m,i - 1}^{t} - 2h_{m,i}^{t} + h_{m,i + 1}^{t} } \right) \\ & + \alpha m_{1} \left( {h_{m,i + 1}^{t} - h_{m,i}^{t} } \right)^{2} \\ \end{aligned} $$

Here,\(h_{m,i + 1}^{t} ,h_{m,i}^{t}\), and \(h_{m,i - 1}^{t}\) are the matric suction head at time t corresponding to i+1, i, and i-1 grid-points.

$$ m_{1} = \frac{\Delta t}{{2\lambda \Delta z^{2} }}, \, m_{2} = \frac{\alpha \Delta t}{{\lambda \Delta z}};L_{1} = \frac{{k_{s} }}{{\alpha \left( {\theta_{s} - \theta_{r} } \right)}} $$

Top boundary constraint yields the following algebraic relation:

$$ \left. {k_{s} \exp \left( {\alpha h_{m} } \right)\left( {\frac{{\partial h_{m} }}{\partial z} + 1} \right)} \right|_{{@(n + 1)^{{{\text{th}}}} {\text{node}}}} = q $$
$$ \Rightarrow \left( {\left. {\frac{{\partial h_{m} }}{\partial z}} \right|_{n + 1} + 1} \right) = \frac{q}{{k_{s} }}\exp \left( { - \alpha h_{m,n + 1} } \right)\; \Rightarrow \left. {\frac{{\partial h_{m} }}{\partial z}} \right|_{n + 1} = Q\exp \left( { - \alpha h_{m,n + 1} } \right) - 1 $$
$$ \Rightarrow \frac{{h_{m,n + 2}^{t + \Delta t} - h_{m,n}^{t + \Delta t} }}{2\Delta z} = Q\exp \left( { - \alpha h_{m,n + 1}^{t} } \right) - 1;\;Q\left( {\text{flow ratio}} \right) = q/k_{s} ; $$
$$ \Rightarrow h_{m,n + 2}^{t + \Delta t} = h_{m,n}^{t + \Delta t} + 2\Delta zQ\exp \left( { - \alpha h_{m,n + 1}^{t} } \right) - 2\Delta z $$
(A.11)
$$ {\text{The }}\;{\text{simultaneous}}\;{\text{ set }}\;{\text{of }}\;{\text{linear}}\;{\text{ equation}}\;{\text{ can }}\;{\text{be }}\;{\text{rewritten }}\;{\text{as}}:{\varvec{AH}}_{m}^{t + \Delta t} = {\varvec{B}}^{t} $$
(A.12)
$$ {\varvec{H}}_{m}^{t + \Delta t} = \left[ {\begin{array}{*{20}c} {h_{m,1}^{t + \Delta t} } & {h_{m,2}^{t + \Delta t} } & {...} & {...} & {h_{m,i - 1}^{t + \Delta t} } & {h_{m,i}^{t + \Delta t} } & {h_{m,i + 1}^{t + \Delta t} } & {...} & {...} & {\begin{array}{*{20}c} {h_{m,n}^{t + \Delta t} } & {h_{m,n + 1}^{t + \Delta t} } \\ \end{array} } \\ \end{array} } \right]_{1 \times (n + 1)}^{T} $$
(A.13a)
$$ {\varvec{B}}^{{\varvec{t}}} = \left[ {\begin{array}{*{20}c} {B_{1} } & {B_{2} } & {...} & {...} & {B_{i - 1} } & {B_{i} } & {B_{i + 1} } & {...} & {...} & {B_{n} } & {B_{n + 1} } \\ \end{array} } \right]_{1 \times (n + 1)}^{T} $$
(A.13b)
$$ \begin{gathered} B_{1} = 0;\;\,B_{i} = h_{m,i}^{t} + m_{1} \left( {h_{m,i - 1}^{t} - 2h_{m,i}^{t} + h_{m,i + 1}^{t} } \right) + \alpha m_{1} \left( {h_{m,i + 1}^{t} - h_{m,i}^{t} } \right)^{2} ; \hfill \\ B_{n} = h_{m,n}^{t} + m_{1} \left( {h_{m,n - 1}^{t} - 2h_{m,n}^{t} + h_{m,n + 1}^{t} } \right) + \alpha m_{1} \left( {h_{m,n + 1}^{t} - h_{m,n}^{t} } \right)^{2} \hfill \\ \end{gathered} $$
$$ B_{n + 1} = h_{m,n + 1}^{t} + p\left( {m_{1} + m_{2} } \right) + m_{1} \left( {2h_{m,n}^{t} - 2h_{m,n + 1}^{t} + p} \right) + \alpha m_{1} \left[ {h_{m,n}^{t} + p - h_{m,n + 1}^{t} } \right]^{ \, 2} $$

\(p = 2\Delta z\left( {Q\exp \left( { - \alpha h_{m,n + 1}^{t} } \right) - 1} \right)\)

$$ {\varvec{A}} = \left[ {\begin{array}{*{20}c} {1} & {0} & {0} & 0 & 0 & 0 & 0 \\ { - m_{1} } & {\left( {1 + 2m_{1} + m_{2} } \right)} & { - \left( {m_{1} + m_{2} } \right)} & 0 & 0 & 0 & 0 \\ {...} & {...} & {...} & {...} & {...} & {...} & {...} \\ 0 & 0 & { - m_{1} } & {\left( {1 + 2m_{1} + m_{2} } \right)} & { - \left( {m_{1} + m_{2} } \right)} & {...} & 0 \\ {...} & {...} & {...} & {...} & {...} & {...} & {...} \\ {...} & {...} & {...} & {...} & {...} & {...} & {...} \\ {...} & {...} & {...} & {...} & {...} & {...} & {...} \\ 0 & 0 & 0 & 0 & { - m_{1} } & {\left( {1 + 2m_{1} + m_{2} } \right)} & { - \left( {m_{1} + m_{2} } \right)} \\ 0 & 0 & 0 & 0 & 0 & { - \left( {2m_{1} + m_{2} } \right)} & {\left( {1 + 2m_{1} + m_{2} } \right)} \\ \end{array} } \right]_{{\left( \begin{subarray}{l} n + 1 \\ \times n + 1 \end{subarray} \right)}} \, $$
(A.14)

Equation (A.12) is further solved by employing Gauss Elimination scheme.

(A.15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Chakraborty, M. Effect of transient flow and pseudo-static forces on the lateral earth pressures developed in retained unsaturated backfills. Sādhanā 48, 161 (2023). https://doi.org/10.1007/s12046-023-02226-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-023-02226-9

Keywords

Navigation