Skip to main content
Log in

A comprehensive review study on aluminium based hybrid composites with organic and inorganic reinforcements

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Aluminum alloys utilization has been continuously increasing in marine, aerospace and automotive industries, owing to its perceptible properties with respect to optimum weight density ratio, good ductility and plasticity etc. Nevertheless, the low hardness, low tensile strength and poor tribological behavior limit its usage. To overcome these shortcomings, different reinforcements (e.g. silicon carbide, aluminum oxide, titanium, grtable aphite, industrial and agriculture waste particles etc.) are incorporated with aluminum alloys. The present study is the compilation of the reported literature pertaining to aluminum based metal matrix composites (AMMC’s), highlighting the effect of several type of matrix metals and reinforcements on the mechanical and tribological performances. The experimental results showed substantial improvement in the overall behavior of AMMC’s as associated to monolithic base metals. The different routes of AMMC’s development, process parameters, key findings and their inference on their properties are summarized in the current review article, which will help the researchers during the selection of process parameters, reinforcements for the fabrication of HAMMC’s & AMMC’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

AMMC:

Aluminum metal matrix composite

HAMMC:

Hybrid aluminum metal matrix composite

SiCp :

Silicon carbide particles

COF (µ):

Co-efficient of friction

MPa:

Mega-Pascal

Nm:

Nano-meter

Wt.%:

Weight percentage

Al4C3 :

Aluminum carbide

SiO2 :

Silicon oxide

% E:

Percentage elongation

TiO2 :

Titanium oxide

CaO:

Calcium oxide

Al2O3 :

Aluminum oxide

Fe2O3 :

Iron oxide

AA:

Aluminum alloy

MgO:

Magnesium oxide

ACM:

Advanced composite material

PVD:

Physical vapor deposition

SiC:

Silicon carbide

Gr:

Graphite

Sp :

Steel particles

RHA:

Rice Husk ash

h-BN:

Hexagonal boron nitride

BLA:

Bamboo leaf ash

QD:

Quarry dust

GSA:

Groundnut shell ash

GSP:

Groundnut shell powder

FEGV:

Fan exit guide vanes

UTS:

Ultimate tensile strength

SDAS:

Secondary dendrite arm spacing

RHN:

Rockwell hardness number

VHN:

Vicker hardness number

BHN:

Brinell hardness number

TS:

Tensile strength

YS:

Yield strength

H:

Hardness

MH:

Micro hardness

ST:

Stirring time

WR:

Wear rate

GBS:

Grain boundary sliding

CS:

Colliery shale

E:

Modulus of elasticity

XRF:

X-ray fluorescent

XRD :

X-ray Diffraction

SEM:

Scanning electron microscope

EDS:

Energy dispersive spectrometer

TEM:

Torsion extrusion method

E-TEM:

Elliptical cross-section torsion extrusion method

SPS:

Single particle size

MPS:

Multiple particle size

PSA:

Periwinkle shell ash

NLA:

Neem leaf ash

PKSA:

Palm kernel shell ash

BFSHA:

Bread fruit seed hull ash

BA:

Bagasse ash

References

  1. Stojanovic B and Epler I 2018 Application of aluminum and aluminum alloys in engineering. Appl. Eng. Lett. 3(2): 52–62

    Article  Google Scholar 

  2. Qian J, Li J, Xiong J, Zhang F and Lin X 2012 In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing. Mater. Sci. Eng. A 550: 279–285

    Article  Google Scholar 

  3. Tsangarakis N, Andrews B O and Cavallaro C 1987 Mechanical properties of some silicon carbide reinforced aluminum composites. J. Compos. Mater. 21(5): 481–492

    Article  Google Scholar 

  4. Garg P, Jamwal A, Kumar D, Sadasivuni K K, Hussain C M and Gupta P 2019 Advance research progresses in aluminium matrix composites: manufacturing & applications. J. Mater. Res. Technol. 8(5): 4924–4939

    Article  Google Scholar 

  5. Rawal S P 2001 Metal-matrix composites for space applications. J. Miner. Met. Mater. Soc. (TMS) 53(4): 14–17

    Article  Google Scholar 

  6. Kuruvilla A K, Bhanuprasad V V, Prasad K S and Mahajan Y R 1989 Effect of different reinforcements on composite-strengthening in aluminium. Bull. Mater. Sci. 12(5): 495–505

    Article  Google Scholar 

  7. Bhoi N K, Singh H and Pratap S 2020 Developments in the aluminum metal matrix composites reinforced by micro/nano particles—a review. J. Compos. Mater. 54(6): 813–833

    Article  Google Scholar 

  8. Moses J J, Dinaharan I and Sekhar S J 2014 Characterization of silicon carbide particulate reinforced AA6061 aluminum alloy composites produced via stir casting. Procedia Mater. Sci. 5: 106–112

    Article  Google Scholar 

  9. Rahman M H and Al Rashed H M 2014 Characterization of silicon carbide reinforced aluminum matrix composites. Procedia Eng. 90: 103–109

    Article  Google Scholar 

  10. Kalkanlı A and Yılmaz S 2008 Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates. Mater. Des. 29(4): 775–780

    Article  Google Scholar 

  11. Bhowmik A, Dey D and Biswas A 2022 Characteristics study of physical, mechanical and Tribological behaviour of SiC/TiB2 dispersed Aluminium matrix composite. Silicon 14(3): 1133–1146

    Article  Google Scholar 

  12. Sharma V K and Kumar V 2019 Development of rare-earth oxides based hybrid AMCs reinforced with SiC/Al2O3: mechanical & metallurgical characterization. J. Mater. Res. Technol. 8(2): 1971–1981

    Article  Google Scholar 

  13. Ali M Z and Motgi B S 2017 A study on mechanical and tribological properties of aluminium 7075 MMCs reinforced with nano silicon carbide (SiC), Tur Husk and E-Glass Fiber. Int. J. Innov. Technol. Res. 5(4): 6995–6999

    Google Scholar 

  14. Bahrami A, Soltani N, Pech Canul M I and Gutiérrez C A 2016 Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit. Rev. Environ. Sci. Technol. 46(2): 143–208

    Article  Google Scholar 

  15. Madakson P B, Yawas D S and Apasi A 2012 Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. Int. J. Eng. Sci. Technol. 4(3): 1190–1198

    Google Scholar 

  16. Aigbodion V S, Hassan S B and Agunsoye J O 2012 Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites. Materials & Design 33: 322–327

    Article  Google Scholar 

  17. Xie X Q, Zhang D, Fan T X, Sakata T, Mori H, Okabe T and Hirose T 2002 The fabrication of composites with interpenetrating networks based on woodceramics. Mater. Lett. 56(1–2): 102–107

    Article  Google Scholar 

  18. Atuanya C U, Onukwuli O D and Aigbodion V S 2014 Experimental correlation of wear parameters in Al-Si-Fe alloy/breadfruit seed hull ash particulate composites. J. Compos. Mater. 48(12): 1487–1496

    Article  Google Scholar 

  19. Acharya S K, Dikshit V and Mishra P 2008 Erosive wear behaviour of redmud filled metal matrix composite. J. Reinf. Plast. Compos. 27(2): 145–152

    Article  Google Scholar 

  20. Rajesh S, Rajakarunakaran S and Pandian R S 2012 Modeling and optimization of sliding specific wear and coefficient of friction of aluminum based red mud metal matrix composite using Taguchi method and response surface methodology. Mater. Phys. Mech. 15(2): 150–166

    Google Scholar 

  21. Zamri Y B, Shamsul J B and Amin M M 2011 Potential of palm oil clinker as reinforcement in aluminium matrix composites for tribological applications. Int. J. Mech. Mater. Eng. 6(1): 10–17

    Google Scholar 

  22. Kumar H, Prasad R, Kumar P, Tewari S P and Singh J K 2020 Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing. J. Alloys Compd. 831: 154832

    Article  Google Scholar 

  23. Lin J T, Bhattacharyya D and Lane C 1995 Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear 181: 883–888

    Article  Google Scholar 

  24. Manivannan I, Ranganathan S, Gopalakannan S, Suresh S, Nagakarthigan K and Jubendradass R 2017 Tribological and surface behavior of silicon carbide reinforced aluminum matrix nanocomposite. Surf. Interfaces 8: 127–136

    Article  Google Scholar 

  25. Divecha A P, Fishman S G and Karmarkar S D 1981 Silicon carbide reinforced aluminum—a formable composite. JoM 33(9): 12–17

    Article  Google Scholar 

  26. Arivukkarasan S, Dhanalakshmi V, Stalin B and Ravichandran M 2018 Mechanical and tribological behaviour of tungsten carbide reinforced aluminum LM4 matrix composites. Part. Sci. Technol. 36(8): 967–973

    Article  Google Scholar 

  27. Ramkumar K R, Sivasankaran S, Al-Mufadi F A, Siddharth S and Raghu R 2019 Investigations on microstructure, mechanical, and tribological behaviour of AA 7075–x wt.% TiC composites for aerospace applications. Arch. Civ. Mech. Eng. 19(2): 428–438

    Article  Google Scholar 

  28. Baradeswaran A E P A and Perumal A E 2013 Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos. Part B Eng. 54: 146–152

    Article  Google Scholar 

  29. Mohanavel V and Ravichandran M 2019 Influence of AlN particles on microstructure, mechanical and tribological behaviour in AA6351 aluminum alloy. Mater. Res. Express 6(10): 106557

    Article  Google Scholar 

  30. Sharma P, Paliwal K, Garg R K, Sharma S and Khanduja D 2017 A study on wear behaviour of Al/6101/graphite composites. J. Asian Ceram. Soc. 5(1): 42–48

    Article  Google Scholar 

  31. Ip S W, Sridhar R, Toguri J M, Stephenson T F and Warner A E M 1998 Wettability of nickel coated graphite by aluminum. Mater. Sci. Eng. A 244(1): 31–38

    Article  Google Scholar 

  32. Amateau M F 1976 Progress in the development of graphite-aluminum composites using liquid infiltration technology. J. Compos. Mater. 10(4): 279–296

    Article  Google Scholar 

  33. El-Ghazaly A, Anis G and Salem H G 2017 Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Compos. Part A Appl. Sci. Manuf. 95: 325–336

    Article  Google Scholar 

  34. Zhao S, Zhang H, Cui Z, Chen D and Chen Z 2020 Particle dispersion and grain refinement of in-situ TiB2 particle reinforced 7075 Al composite processed by elliptical cross-section torsion extrusion. J. Alloys Compd. 834: 155136

    Article  Google Scholar 

  35. Madhukar P, Selvaraj N, Rao C S P and Kumar G V 2020 Fabrication and characterization two step stir casting with ultrasonic assisted novel AA7150-hBN nanocomposites. J. Alloys Compd. 815: 152464

    Article  Google Scholar 

  36. Cardinale A M, Macciò D, Luciano G, Canepa E and Traverso P 2017 Thermal and corrosion behavior of as cast AlSi alloys with rare earth elements. J. Alloys Compd. 695: 2180–2189

    Article  Google Scholar 

  37. Ge D and Gu M 2001 Mechanical properties of hybrid reinforced aluminum based composites. Mater. Lett. 49(6): 334–339

    Article  Google Scholar 

  38. Yang Q, Shen Y, Liu J, Wang L, Chen Z, Wang M L and Wang H W 2020 Microstructure and mechanical response of TiB2/Al–Zn–Mg–Cu composites with more addition of Zn. J. Alloys Compd. 816: 152584

    Article  Google Scholar 

  39. Gorshenkov M V, Kaloshkin S D, Tcherdyntsev V V, Danilov V D and Gulbin V N 2012 Dry sliding friction of Al-based composites reinforced with various boron-containing particles. J. Alloys Compd. 536: S126–S129

    Article  Google Scholar 

  40. Callister W D and Rethwisch D G 2018 Materials Science and Engineering: An introduction. vol 9. Wiley, New York, pp 96–98

    Google Scholar 

  41. Wu Y and Kim G Y 2011 Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. J. Mater. Process. Technol. 211(8): 1341–1347

    Article  Google Scholar 

  42. Wu Y, Kim G Y, Anderson I E and Lograsso T A 2010 Fabrication of Al6061 composite with high SiC particle loading by semi-solid powder processing. Acta Materialia 58(13): 4398–4405

    Article  Google Scholar 

  43. Wu Y and Kim G Y 2015 Compaction behavior of Al6061 and SiC binary powder mixture in the mushy state. J. Mater. Process. Technol. 216: 484–491

    Article  Google Scholar 

  44. Moona G, Walia R S, Rastogi V and Sharma R 2018 Aluminium metal matrix composites: a retrospective investigation. Indian J. Pure Appl. Phys. (IJPAP) 56(2): 164–175

    Google Scholar 

  45. Lloyd D J 1994 Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39(1): 1–23

    Article  Google Scholar 

  46. Jawalkar C S, Verma A S and Suri N M 2017 Fabrication of aluminium metal matrix composites with particulate reinforcement: a review. Mater. Today Proc. 4(2): 2927–2936

    Article  Google Scholar 

  47. Kala H, Mer K K S and Kumar S 2014 A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Procedia Mater. Sci. 6: 1951–1960

    Article  Google Scholar 

  48. Prasad M A and Bandekar N 2015 Study of microstructure and mechanical behavior of aluminum/garnet/carbon hybrid metal matrix composites (HMMCs) fabricated by chill casting method. J. Mater. Sci. Chem. Eng. 3(03): 18–26

    Google Scholar 

  49. Do Woo K and Lee H B 2007 Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder. Mater. Sci. Eng. A 449: 829–832

    Article  Google Scholar 

  50. Dhanashekar M and Kumar V S 2014 Squeeze casting of aluminium metal matrix composites-an overview. Procedia Eng. 97: 412–420

    Article  Google Scholar 

  51. Ramnath B V, Elanchezhian C, Annamalai R M, Aravind S, Atreya T S A, Vignesh V and Subramanian C 2014 Aluminium metal matrix composites—a review. Rev. Adv. Mater. Sci 38(5): 55–60

    Google Scholar 

  52. Cao G, Kobliska J, Konishi H and Li X 2008 Tensile properties and microstructure of SiC nanoparticle–reinforced Mg-4Zn alloy fabricated by ultrasonic cavitation–based solidification processing. Metall. Mater. Trans. A 39(4): 880–886

    Article  Google Scholar 

  53. Woo K D and Zhang D L 2004 Fabrication of Al–7wt% Si–0.4 wt% Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy. Curr. Appl. Phys. 4(2–4): 175–178

    Article  Google Scholar 

  54. Moosa I S 2014 History and development of permanent magnets. History, 2(1):18-26

  55. Anish R, Singh G R and Sivapragash M 2012 Techniques for processing metal matrix composite: a survey. Procedia Eng. 38: 3846–3854

    Article  Google Scholar 

  56. Inada T 2011 Thermal management materials. Hitachi Chem. Tech. Rep. 54: 5–11

    Google Scholar 

  57. Viswanathan V, Laha T, Balani K, Agarwal A and Seal S 2006 Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng. R Rep. 54(5–6): 121–285

    Article  Google Scholar 

  58. Torralba J D, Da Costa C E and Velasco F 2003 P/M aluminum matrix composites: an overview. J. Mater. Process. Technol. 133(1–2): 203–206

    Article  Google Scholar 

  59. Prakash C and Pruthviraj R 2011 Microstructural studies of cast zinc-aluminum-Sic-graphite hybrid composites. Res. J. Chem. Sci. 1(6): 88–90

    Google Scholar 

  60. Koli D K, Agnihotri G and Purohit R 2014 A review on properties, behaviour and processing methods for Al-nano Al2O3 composites. Procedia Mater. Sci. 6: 567–589

    Article  Google Scholar 

  61. Surappa M K and Rohatgi P K 1981 Preparation and properties of cast aluminium-ceramic particle composites. J. Mater. Sci. 16(4): 983–993

    Article  Google Scholar 

  62. Han Q, Setchi R and Evans S L 2016 Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol. 297: 183–192

    Article  Google Scholar 

  63. Saberi Y, Zebarjad S M and Akbari G H 2009 On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite. J. Alloys Compd. 484(1–2): 637–640

    Article  Google Scholar 

  64. Fathy A, Ibrahim D, Elkady O and Hassan M 2019 Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process. J. Compos. Mater. 53(2): 209–218

    Article  Google Scholar 

  65. Ko S, Park H, Lee Y H, Shin S, Jo I, Kim J and Cho S 2020 Fabrication of TiB2–Al1050 composites with improved microstructural and mechanical properties by a liquid pressing infiltration process. Materials 13(7): 1588

    Article  Google Scholar 

  66. Alaneme K K, Bodunrin M O and Awe A A 2018 Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. J. King Saud Univ. Eng. Sci. 30(1): 96–103

    Google Scholar 

  67. Singh J, Suri N M and Verma A 2015 Affect of mechanical properties on groundnut shell ash reinforced Al6063. Int. J. Technol. Res. Eng. 2(11): 2619–2623

    Google Scholar 

  68. Selvam J D R, Smart D R and Dinaharan I 2013 Synthesis and characterization of Al6061-Fly Ashp-SiCp composites by stir casting and compocasting methods. Energy procedia 34: 637–646

    Article  Google Scholar 

  69. Dey D, Bhowmik A and Biswas A 2021 Characterization of physical and mechanical properties of aluminium based composites reinforced with titanium diboride particulates. J. Compos. Mater. 55(14): 1979–1991

    Article  Google Scholar 

  70. Balasubramanian I and Maheswaran R 2015 Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites. Mater. Des. 1980–2015(65): 511–520

    Article  Google Scholar 

  71. Asif M, Chandra K and Misra P S 2011 Development of aluminium based hybrid metal matrix composites for heavy duty applications. J. Miner. Mater. Charact. Eng. 10(14): 1337–1344

    Google Scholar 

  72. Rojas J I, Siva B V, Sahoo K L and Crespo D 2018 Viscoelastic behavior of a novel aluminum metal matrix composite and comparison with pure aluminum, aluminum alloys, and a composite made of Al–Mg–Si alloy reinforced with SiC particles. J. Alloys Compd. 744: 445–452

    Article  Google Scholar 

  73. Agnihotri R and Dagar S 2017 Mechanical properties of Al-SiC metal matrix composites fabricated by stir casting route. Res. Med. Eng. Sci. 2(5): 178–183

    Google Scholar 

  74. Kumar M S, Begum S R and Vasumathi M 2019 Influence of stir casting parameters on particle distribution in metal matrix composites using stir casting process. Mater. Res. Express 6(10): 106544

    Google Scholar 

  75. Tang J, Shen Y and Li J 2019 Investigation of microstructure and mechanical properties of SiC/Al surface composites fabricated by friction stir processing. Mater. Res. Express 6(10): 106576

    Article  Google Scholar 

  76. Krishna M V and Xavior A M 2014 An investigation on the mechanical properties of hybrid metal matrix composites. Procedia Eng. 97: 918–924

    Article  Google Scholar 

  77. Dhanasekaran R, SaiKrishna N, Santosh M, Pallavi P and Sreenatha Reddy S 2017 Study of hardness of aluminum (LM25) composite. Int. J. Eng. Res. Adv. Technol. (IJERAT) 3(5): 1–7

    Google Scholar 

  78. Prasad Reddy A, Vamsi Krishna P and Rao R N 2019 Tribological behaviour of Al6061–2SiC-xGr hybrid metal matrix nanocomposites fabricated through ultrasonically assisted stir casting technique. Silicon 11(6): 2853–2871

    Article  Google Scholar 

  79. Ul Haq M I and Anand A 2019 Friction and wear behavior of AA 7075-Si3N4 composites under dry conditions: effect of sliding speed. Silicon 11(2): 1047–1053

    Article  Google Scholar 

  80. Haq M I U and Anand A 2018 Microhardness studies on stir cast AA7075-Si3N4 based composites. Mater. Today Proc. 5(9): 19916–19922

    Article  Google Scholar 

  81. Irfan Ul Haq M, Raina A, Anand A, Sharma S M and Kumar R 2020 Elucidating the effect of MoS2 on the mechanical and tribological behavior of AA7075/Si3N4 composite. J. Mater. Eng. Perform. 29(11): 7445–7455

    Article  Google Scholar 

  82. Haq M I U and Anand A 2018 Dry sliding friction and wear behaviour of hybrid AA7075/Si3N4/Gr self-lubricating composites. Mater. Res. Express 5(6): 066544

    Article  Google Scholar 

  83. Ul Haq M I and Anand A 2018 Dry sliding friction and wear behavior of AA7075-Si3N4 composite. Silicon 10(5): 1819–1829

    Article  Google Scholar 

  84. Srikanth B, Kumar B S and Radhakrishna L 2019 Mechanical behavior of Nickel addition on aluminium alloy Al-7175. Res. J. Eng. Technol. 10(3): 125–130

    Article  Google Scholar 

  85. Kanthavel K, Sumesh K R and Saravanakumar P 2016 Study of tribological properties on Al/Al2O3/MoS2 hybrid composite processed by powder metallurgy. Alexand. Eng. J. 55(1): 13–17

    Article  Google Scholar 

  86. Liu S, Wang Y, Muthuramalingam T and Anbuchezhiyan G 2019 Effect of B4C and MOS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications. Compos. Part B Eng. 176: 107329

    Article  Google Scholar 

  87. Aherwar A, Patnaik A and Pruncu C I 2020 Effect of B4C and waste porcelain ceramic particulate reinforcements on mechanical and tribological characteristics of high strength AA7075 based hybrid composite. J. Mater. Res. Technol. 9(5): 9882–9894

    Article  Google Scholar 

  88. Sharma A K, Bhandari R, Aherwar A and Rimašauskienė R 2020 Matrix materials used in composites: a comprehensive study. Mater. Today Proc. 21: 1559–1562

    Article  Google Scholar 

  89. Subrahmanyam A P S V R, Madhukiran J, Naresh G and Madhusudhan S 2016 Fabrication and characterization of Al356. 2, rice husk ash and fly ash reinforced hybrid metal matrix composite. Int. J. Adv. Sci. Technol 94: 49–56

    Article  Google Scholar 

  90. Sharma A, Belokar R M and Kumar S 2018 Dry sliding wear characterization of red mud reinforced aluminium composite. J. Braz. Soc. Mech. Sci. Eng. 40(6): 1–12

    Article  Google Scholar 

  91. Akbar H I, Surojo E and Ariawan D 2020 Investigation of industrial and agro wastes for aluminum matrix composite reinforcement. Procedia Struct. Integ. 27: 30–37

    Article  Google Scholar 

  92. Dixit V, Thakur Y and Kumar R 2016 A general report on previous experiments performed on the aluminum-silicon carbide metal matrix composites. Int. J. New. Inn. 5(1): 371–378

    Google Scholar 

  93. James S J, Venkatesan K, Kuppan P and Ramanujam R 2014 Hybrid aluminium metal matrix composite reinforced with SiC and TiB2. Procedia Eng. 97: 1018–1026

    Article  Google Scholar 

  94. Anand A and Gowda S C 2015 Characterisation of aluminum-silicon carbide composite using stir casting technique. Int. J. Sci Res. Dev. 3(8): 205–208

    Google Scholar 

  95. Muni R N, Singh J, Kumar V and Goyal T 2016 Aluminium matrix hybrid composites: a review of different reinforcements on mechanical and tribological characteristics. Int. J. Explor. Emerg. Trends Eng. (IJEETE) 3: 367–376

    Google Scholar 

  96. Alaneme K K, Fajemisin A V and Maledi N B 2019 Development of aluminium-based composites reinforced with steel and graphite particles: structural, mechanical and wear characterization. J. Mater. Res. Technol. 8(1): 670–682

    Article  Google Scholar 

  97. Rebba B and Ramanaiah N 2014 Evaluation of mechanical properties of aluminium alloy (Al-2024) reinforced with molybdenum disulphide (MOS2) metal matrix composites. Procedia Mater. Sci. 6: 1161–1169

    Article  Google Scholar 

  98. Pérez-Bustamante R, Pérez-Bustamante F, Estrada-Guel I, Santillán-Rodríguez C R, Matutes-Aquino J A, Herrera-Ramírez J M and Martínez-Sánchez R 2011 Characterization of Al2024-CNTs composites produced by mechanical alloying. Powder Technol. 212(3): 390–396

    Article  Google Scholar 

  99. Ramkumar K R and Natarajan S 2019 Tensile properties and strengthening effects of Al 3003 alloy weldment reinforced with TiO2 nanoparticles. Compos. Part B Eng. 175: 107159

    Article  Google Scholar 

  100. Senthilkumar T S and Muralikannan R 2019 Role of TiC and h-BN particles on morphological characterization and surface effects of Al 4032 hybrid composites using EDM process. J. Mech. Sci. Technol. 33(9): 4255–4264

    Article  Google Scholar 

  101. Gaitonde V N, Karnik S R and Jayaprakash M S 2012 Some studies on wear and corrosion properties of AL5083/Al 2 O 3/graphite hybrid composites. J. Miner. Mater. Charact. Eng. 11(07): 695

    Google Scholar 

  102. Savina J P, Raghavendra B V and Rangappa D 2021 Experimental investigation on mechanical and tribological behaviour of surfactant coated multi-walled carbon nano tubes reinforced aluminium 6065-silicon metal matrix composite. Lett. Mater. 11(1): 73–78

    Article  Google Scholar 

  103. Sunitha N and Manjunatha K G 2018 Evaluation of corrosion studies of as casted and heat treated aluminum 6065 metal matrix composite by weight loss method. Mater. Today Proc. 5(10): 22727–22733

    Article  Google Scholar 

  104. Baradeswaran A and Perumal A E 2014 Wear and mechanical characteristics of Al 7075/graphite composites. Composites Part B: Engineering 56: 472–476

    Article  Google Scholar 

  105. Kumar R and Dhiman S 2013 A study of sliding wear behaviors of Al-7075 alloy and Al-7075 hybrid composite by response surface methodology analysis. Mater. Des. 50: 351–359

    Article  Google Scholar 

  106. Usman M A, Momohjimoh I and Usman A O 2021 Characterization of groundnut shell powder as a potential reinforcement for bio-composites. Polym. Renew. Resour. 12(3–4): 77–91

    Google Scholar 

  107. Tile J M, Nyior G B and Sidi M S 2018 Mechanical properties of Al-Mg-Si/Groundnut shell particulate composite produced by stir casting method. Am. J. Eng. Res 7(5): 247–252

    Google Scholar 

  108. Shaik Abdul Munaf, Akhil Varma G T K, Bharagava S and Preetham V 2019 Hybrid metal matrix composites reinforced with SiC and NEEM leaf ash using Stir Casting Method. Int. J. Rec. Technol. Eng. (IJRTE) 8(1): 63–67

    Google Scholar 

  109. Ramesh C, Valliappan M and Prasanna S C 2015 Fabrication of AMMC’s by using stir casting method for hand lever. Int. J. New Technol. Sci. Eng. 2(1): 2349–2780

    Google Scholar 

  110. Yogeshwaran S, Prabhu R, Natrayan L and Murugan R 2015 Mechanical properties of leaf ashes reinforced aluminum alloy metal matrix composites. Int. J. Appl. Eng. Res. 10(13): 11048–11052

    Google Scholar 

  111. Yadav A K, Pandey K M and Dey A 2018 Aluminium metal matrix composite with rice husk as reinforcement: a review. Mater. Today Proc. 5(9): 20130–20137

    Article  Google Scholar 

  112. Moosa A and Awad A Y 2016 Effect of rare earth addition on wear properties of aluminum alloy-rice husk ash/yttrium oxide hybrid composites. Int. J. Curr. Eng. Technol. 6(3): 788–798

    Google Scholar 

  113. Saravanan S D and Kumar M S 2013 Effect of mechanical properties on rice husk ash reinforced aluminum alloy (AlSi10Mg) matrix composites. Procedia Eng. 64: 1505–1513

    Article  Google Scholar 

  114. Udoye N E, Nnamba O J, Fayomi O S I, Inegbenebor A O and Jolayemi K J 2021 Analysis on mechanical properties of AA6061/Rice husk ash composites produced through stir casting technique. Mater. Today Proc. 43: 1415–1420

    Article  Google Scholar 

  115. Alaneme K K, Ademilua B O and Bodunrin M O 2013 Mechanical properties and corrosion behaviour of aluminium hybrid composites reinforced with silicon carbide and bamboo leaf ash. Tribol. Ind. 35(1): 25

    Google Scholar 

  116. Bannaravuri P K and Birru A K 2018 Strengthening of mechanical and tribological properties of Al-4.5% Cu matrix alloy with the addition of bamboo leaf ash. Res. Phys. 10: 360–373

    Google Scholar 

  117. Kumar B P and Birru A K 2017 Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method. Trans. Nonferrous Met. Soc. China 27(12): 2555–2572

    Article  Google Scholar 

  118. Iyasele E O 2018 Comparative analysis on the mechanical properties of a metal-matrix composite (MMC) reinforced with palm kernel/periwinkle shell ash. GSJ 6(8): 1

    Google Scholar 

  119. Ebhojiaye R S, Amiolemhen, P E and Ibhadode A O A 2018 Development of hybrid composite material of palm kernel shell (PKS) and Periwinkle Shell (PS) particles in pure aluminium Matrix. In Solid State Phenomena, Trans Tech Publications Ltd. Vol. 278: 54–62

  120. Ezema I C, Aigbodion V S, Okonkwo E G and Obayi C S 2020 Fatigue properties of value-added composite from Al-Si-Mg/palm kernel shell ash nanoparticles. Int. J. Adv. Manuf. Technol. 107(7): 3247–3257

    Article  Google Scholar 

  121. Oladele I O and Okoro A M 2016 The effect of palm kernel shell ash on the mechanical properties of as-cast aluminium alloy matrix composites. Leonardo J. Sci 28: 15–30

    Google Scholar 

  122. Joseph O O and Babaremu K O 2019 Agricultural waste as a reinforcement particulate for aluminum metal matrix composite (AMMCs): a review. Fibers 7(4): 33

    Article  Google Scholar 

  123. Kulkarni P P, Siddeswarappa B and Kumar K S H 2019 A survey on effect of agro waste ash as reinforcement on aluminium base metal matrix composites. Open J. Compos. Mater. 9(03): 312

    Article  Google Scholar 

  124. Kapoor S and Sanjeev M A 2016 Review paper on research and analysis of non asbestos composite material. Int. J. Adv. Eng. Manag. Sci. 2(7): 1108–1117

    Google Scholar 

  125. Atuanya C U, Ibhadode A O A and Dagwa I M 2012 Effects of breadfruit seed hull ash on the microstructures and properties of Al–Si–Fe alloy/breadfruit seed hull ash particulate composites. Res. Phys. 2: 142–149

    Google Scholar 

  126. Alaneme K K and Bamike B J 2018 Characterization of mechanical and wear properties of aluminium based composites reinforced with quarry dust and silicon carbide. Ain Shams Eng. J. 9(4): 2815–2821

    Article  Google Scholar 

  127. Alaneme K K, Adegun M H, Archibong A G and Okotete E A 2019 Mechanical and wear behaviour of aluminium hybrid composites reinforced with varied aggregates of alumina and quarry dust. J. Chem. Technol. Metall. 54(6): 1361–1370

    Google Scholar 

  128. Xavier L F and Suresh P 2016. Wear behavior of aluminium metal matrix composite prepared from industrial waste. The Scientific World Journal, 2016: 1–8. https://doi.org/10.1155/2016/6538345

  129. Ramesh M, Karthikeyan T, Jeevanandam A, Mathiarasan V, Muthukumar N and Perumalsamy D 2014 Physical and thermal properties of quarry dust reinforced A356 metal matrix composites. Int. J. Adv. Mech. Eng. 4(3): 277–284

    Google Scholar 

  130. Kalyankar N S, Shelke R and Barkul D 2016 A review on effect on properties of Al-SiC composites fabricated by stir casting method. Int. J. Res. Eng. Technol. 5(2): 283–287

    Article  Google Scholar 

  131. Satyanarayen D R, Shreesaravanan-Balaguru M and Devanathan C A Study on mechanical properties of aluminum LM25-SiC composites fabricated using stir casting technique, 2394-3777

  132. Surya M S and Gugulothu S K 2022 Fabrication, mechanical and wear characterization of silicon carbide reinforced Aluminium 7075 metal matrix composite. Silicon 14(5): 2023–2032

    Article  Google Scholar 

  133. Hassan M A, Ofor T C, Usman A M and Godi N Y 2014 Development of aluminium metal matrix composite using stir casting method. Int. J. Eng. Sci. 3(8): 36–39

    Google Scholar 

  134. Subramani N, Balamurugan M and Vijayaraghavan K 2014 Mechanical behavior of Al-SiC composites prepared by stir casting method. Int. J. Innov. Res. Sci. Eng. Technol. 3(3): 10467–10473

    Google Scholar 

  135. Pargunde D M, Thokal G N, Tambuskar D P and Kulkarni S S 2013 Development of aluminium based metal matrix composite (AlSiC). Int. J. Adv. Eng. Res. Stud. 3(1): 22–25

    Google Scholar 

  136. Dabade U A and Jadhav M R 2016 Experimental study of surface integrity of Al/SiC particulate metal–matrix composites in hot machining. Procedia Cirp 41: 914–919

    Article  Google Scholar 

  137. Adebisi A A, Maleque M A, Ali M Y and Bello K A 2016 Effect of variable particle size reinforcement on mechanical and wear properties of 6061Al–SiCp composite. Compos. Interfaces 23(6): 533–547

    Article  Google Scholar 

  138. Venkatesh B and Harish B 2015 Mechanical properties of metal matrix composites (Al/SiCp) particles produced by powder metallurgy. Int. J. Eng. Res. Gen. Sci. 3(1): 1277–1284

    Google Scholar 

  139. Srinivasa K, Devaraj M R, Yathisha N and Manjunath H S 2014 Microstructure analysis and wear behaviour of Al based metal matrix composite reinforced with ceramic particles. Int. J. Res. Eng. Technol. 3(9): 332–337

    Article  Google Scholar 

  140. Jayakumar A and Rangaraj M 2014 Property analysis of aluminium (LM-25) metal matrix composite. Int. J. Emerg. Technol. Adv. Eng. 4(2): 495–501

    Google Scholar 

  141. Samal B P, Panigrahi S C and Sarangi B 2013 Use of modified stir casting technique to produce metal matrix composites. Safety 10: 11

    Google Scholar 

  142. Khatkar S K, Suri N M and Kant S 2018 A review on mechanical and tribological properties of graphite reinforced self-lubricating hybrid metal matrix composites. Rev. Adv. Mater. Sci. 56(1): 1–20

    Article  Google Scholar 

  143. Louis M J 2014 Fabrication, testing & analysis of aluminum 2024 metal matrix composite. IJRAME J. 2: 29–37

    Google Scholar 

  144. Mosleh-Shirazi S and Akhlaghi F 2019 Tribological behavior of Al/SiC and Al/SiC/2 vol% Gr nanocomposites containing different amounts of nano SiC particles. Mater. Res. Express 6(6): 065039 https://doi.org/10.1088/2053-1591/ab0929

    Article  Google Scholar 

  145. Mazahery A, Abdizadeh H and Baharvandi H R 2009 Development of high-performance A356/nano-Al2O3 composites. Mater. Sci. Eng. A 518(1–2): 61–64

    Article  Google Scholar 

  146. Singh G and Giri T 2016 Fabrication of aluminum/magnesium composite material and optimization their mechanical properties. Int. J. Sci. Res. 5(11):1589–1594

  147. Bacciarini C and Mathier V 2014 Aluminium AA6061 matrix composite reinforced with spherical alumina particles produced by infiltration: perspective on aerospace applications. J. Metall.

  148. Srivyas P D and Charoo M S 2020 Effect of load on the tribological properties of eutectic Al-Si reinforced n-Al2O3 under dry sliding conditions. Adv. Tribol. 2020

  149. Sajjadi S A, Ezatpour H R and Beygi H 2011 Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater. Sci. Eng. A 528(29–30): 8765–8771

    Article  Google Scholar 

  150. Suresh S, Harinathgowd G and Kumar M D 2018 Processing and Mechanical testing’s of 7075 Al matrix composite reinforced with al2o3 nano-particles fabricated by stir casting route. Int. J. Mech. Prod. Eng. Res. Dev. (IJMPERD). 8(2): 539–550

    Google Scholar 

  151. Samal P, Vundavilli P R, Meher A and Mahapatra M M 2020 Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J. Manuf. Process. 59: 131–152

    Article  Google Scholar 

  152. Sharma V K, Kumar V and Joshi R S 2019 Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application. J. Mater. Res. Technol. 8(4): 3504–3516

    Article  Google Scholar 

  153. Xiaofeng W U, Fufa W U and Zhe W A N G 2013 Influence of neodymium addition on microstructure, tensile properties and fracture behavior of cast Al-Mg2Si metal matrix composite. J. Rare Earths 31(3): 307–312

    Article  Google Scholar 

  154. Singh N, Belokar R M and Walia R S 2020 A critical review on advanced reinforcements and base materials on hybrid metal matrix composites. Silicon 14: 335–358

    Article  Google Scholar 

  155. Reddy P V, Kumar G S, Krishnudu D M and Rao H R 2020 Mechanical and wear performances of aluminium-based metal matrix composites: a review. J. Bio Tribo Corros. 6(3): 1–16

    Article  Google Scholar 

  156. Ibrahim I A, Mohamed F A and Lavernia E J 1991 Particulate reinforced metal matrix composites—a review. J. Mater. Sci. 26(5): 1137–1156

    Article  Google Scholar 

  157. Almomani M A, Hayajneh M T and Al-Shrida M A M 2020 Investigation of mechanical and tribological properties of hybrid green eggshells and graphite-reinforced aluminum composites. J. Braz. Soc. Mech. Sci. Eng. 42(1): 1–13

    Article  Google Scholar 

  158. Aggarwal D, Sharma V K, Kumar V and Joshi R S 2018 Comparison between Single rare earth and mixed rare earth reinforced Aluminium metal matrix composites on the basis of wear properties. Int. J. Appl. Eng. Res. 13(9): 55–63

    Google Scholar 

  159. Sozhamannan C G, Naveen Kumar K, Velmurugan K, Pandian R and Venkatachalapathy V S K 2016 Study on wear performance of 6061 Al/Nano TiCp/Gr hybrid composites. J. Mater. Sci. Mech. Eng. (JMSME) 3(6): 449–452

    Google Scholar 

  160. Rajesh P V and Roseline S 2016 experimental investigation of mechanical properties of aluminium alloy Al-6063 based hybrid metal matrix composite. Int. J. Adv. Eng. Res. 11(1): 10–17

    Google Scholar 

  161. Butola R, Pratap C, Shukla A and Walia R S 2019 Effect on the mechanical properties of aluminum-based hybrid metal matrix composite using stir casting method. In Materials Science Forum, Trans Tech Publications Ltd. 969: 253–259

  162. Moona G, Walia R S, Rastogi V and Sharma R 2019 Parameter optimization and characterization of environmental friendly aluminium hybrid metal matrix composites. Mater. Res. Express 6(11): 1165d5

    Article  Google Scholar 

  163. Irhayyim S S, Hammood H S and Mahdi A D 2020 Mechanical and wear properties of hybrid aluminum matrix composite reinforced with graphite and nano MgO particles prepared by powder metallurgy technique. AIMS Mater. Sci. 7: 103–115

    Article  Google Scholar 

  164. Chandramohan V and Arjunraj R 2014 Preparation of hybrid aluminium metal matrix composites by using stir process. Int. J. Eng. Sci. Res. Technol. 3(11): 242e50

    Google Scholar 

  165. Ramanathan A, Krishnan P K and Muraliraja R 2019 A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42: 213–245

    Article  Google Scholar 

  166. Viswakarma P R A D Y U M N A, Soni S and Mishra P M 2018 An effect of reinforcement and heat treatment on AA7075 metal matrix composite—a review. Int. J. Mech. Prod. Eng. Res. Dev. 8(6): 275–288

    Google Scholar 

  167. Kumar A, Singh R C and Chaudhary R 2020 Recent progress in production of metal matrix composites by stir casting process: an overview. Mater. Today Proc. 21: 1453–1457

    Article  Google Scholar 

  168. Butola R, Ranganath M S and Murtaza Q 2019 Fabrication and optimization of AA7075 matrix surface composites using Taguchi technique via friction stir processing (FSP). Eng. Res. Express 1(2): 025015

    Article  Google Scholar 

  169. Sahu M K and Sahu R K 2018 Fabrication of aluminum matrix composites by stir casting technique and stirring process parameters optimization. In Advanced casting technologies. IntechOpen, Vol. 10, pp. 111–126

  170. Verma A S, Suri N M and Kant S 2012 Effect of process parameter of AL-6063 based fly ash composites using Taguchi. Int. J. Appl. Eng. Res. 7(11): 1856–1859

    Google Scholar 

  171. Alaneme K K and Fajemisin A V 2018 Evaluation of the damping behaviour of Al-Mg-Si alloy based composites reinforced with steel, steel and graphite, and silicon carbide particulates. Eng. Sci. Technol. Int. J. 21(4): 798–805

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to PARAMJIT SINGH or RS WALIA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SINGH, P., WALIA, R. & JAWALKAR, C.S. A comprehensive review study on aluminium based hybrid composites with organic and inorganic reinforcements. Sādhanā 48, 34 (2023). https://doi.org/10.1007/s12046-023-02093-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-023-02093-4

Keywords

Navigation