Skip to main content
Log in

Tabulation of Mindlin–Airy stress potentials and the corresponding stress and displacement in polar co-ordinates in couple stress elasticity

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The present note tabulates the generalized solution to Mindlin–Airy potential in couple stress elasticity; counterpart to Airy stress potential in classical elasticity. Subsequently stress, couple stress and displacement components are compiled in polar co-ordinates. The utility of the developed tables is demonstrated through solution to two boundary value problems on circular domains in couple stress elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [12], Eqs. (A9–A12) representing \(\lbrace \sigma _{yy}, \sigma _{xx}, \sigma _{yx}, \sigma _{xy} \rbrace \) should be appended with \(\lbrace Tr_1, -Tr_1, Tr_2, Tr_2 \rbrace \) respectively where \(Tr_1 = \mu b \cos \theta \sin ^2 \theta \Bigl [-8(\ell /r)^2 +\lbrace 4+(r/\ell )^2 \rbrace K_2(r/\ell ) \Bigr ]/(\pi r)\) and \(Tr_2 = \mu b \sin \theta \cos (2\theta ) K_1(r/\ell )/(\pi \ell )\).

References

  1. Mindlin R D 1963 Influence of couple-stresses on stress concentrations. Exp. Mech.. 3: 1–7

    Article  Google Scholar 

  2. Hartranft R J and Sih G C 1965 The effect of couple-stresses on the stress concentration of a circular inclusion. J. Appl. Mech. 32: 429–431

    Article  Google Scholar 

  3. Weitsman Y 1965 Couple-stress effects on stress concentration around a cylindrical inclusion in a field of uniaxial tension. J. Appl. Mech. 324: 424–428

    Article  Google Scholar 

  4. Lubarda V A 2003 Circular inclusions in anti-plane strain couple stress elasticity. Int. J. Solids Struct. 40: 3827—3851

    Article  MATH  Google Scholar 

  5. Michell J H 1899 On the direct determination of stress in an elastic solid, with application to the theory of plates. Proc. Lond. Math. Soc. 31(1): 100–124

    Article  MathSciNet  MATH  Google Scholar 

  6. Little R W 1973 Elasticity. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

  7. Barber J R 2010 Elasticity, 3rd revised Edition. Springer Science+Business Media B.V.

  8. Jog C S 2015 Continuum Mechanics: Foundations and Applications of Mechanics, 3rd ed., Vol. 1. Cambridge University Press, New Delhi, India

  9. Singh G and Bhandakkar T K 2019 Simplified approach to solution of mixed boundary value problems on homogeneous circular domain in elasticity. J. Appl. Mech. 86: 021007-1–9

    Google Scholar 

  10. Maple 2018 Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.

  11. Cohen H 1966 Dislocations in couple-stress elasticity. J. Math. Phys. 45(1–4): 35–44

    Article  MathSciNet  Google Scholar 

  12. Gourgiotis P A and Georgiadis H G 2008 An approach based on distributed dislocations and disinclinations for crack problems in couple-stress elasticity. Int. J. Solids Struct. 45: 5521–5539

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial assistance extended by Science and Engineering Research Board (SERB) through the MATRICS Grant MTR/2020/000217. The author also thanks Madhav D. More whose Master’s Thesis Project was the motivation for the presented work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmay K Bhandakkar.

Appendix I: Stress and couple stress components

Appendix I: Stress and couple stress components

The terms appearing in tables 23 are by-product of the terms in Eqs. (7)–(11) and its involvement in the stress computation through Eqs. (12)–(17). The definition of the terms is given below,

$$\begin{aligned} sT_{1r\theta }=-\frac{1}{\ell r} \bigl [ G_{01}I_1(r/\ell ) -H_{01}K_1(r/\ell )\bigr ], \end{aligned}$$
(A1)
$$\begin{aligned} sT_{1\theta r}&=\frac{1}{\ell ^2}\Bigl [ G_{01}\lbrace I_0(r/\ell ) -(\ell /r)I_1(r/\ell )\rbrace \\ &\quad +H_{01}\lbrace K_0(r/\ell )+(\ell /r)K_1(r/\ell ) \rbrace \Bigr ],\end{aligned}$$
(A2)
$$\begin{aligned} csT_{1r}=uT_{1\theta }=\frac{1}{\ell } \bigl [ G_{01}I_1(r/\ell ) -H_{01}K_1(r/\ell )\bigr ], \end{aligned}$$
(A3)
$$\begin{aligned} sT_{2r}&= \frac{1}{r^2}\Bigl [ F_1 \lbrace 2 K_1 (r/\ell ) + (r/\ell ) K_0(r/\ell )\rbrace \\ &\quad +G_1 \lbrace 2 I_1 (r/\ell ) -(r/\ell )I_0(r/\ell ) \rbrace \Bigr ]\cos \theta ,\end{aligned}$$
(A4)
$$\begin{aligned} sT_{2\theta }&=\frac{1}{r^2} \Bigl [ -F_1 \lbrace 2 K_1 (r/\ell ) + (r/\ell ) K_0(r/\ell )\rbrace \\ &\quad -G_1 \lbrace 2 I_1 (r/\ell ) -(r/\ell )I_0(r/\ell ) \rbrace \Bigr ] \cos \theta ,\end{aligned}$$
(A5)
$$\begin{aligned} sT_{2r\theta }&= \frac{1}{r^2} \Bigl [ F_1 \lbrace 2 K_1 (r/\ell ) + (r/\ell ) K_0(r/\ell )\rbrace \\ &\quad + G_1 \lbrace 2 I_1 (r/\ell ) -(r/\ell )I_0(r/\ell ) \rbrace \Bigr ] \sin \theta ,\end{aligned}$$
(A6)
$$\begin{aligned} sT_{2\theta r}&= \frac{1}{r^2} \Bigl [ F_1 \lbrace 2 K_1 (r/\ell ) + (r/\ell ) K_0(r/\ell ) \\ &\quad + (r/\ell )^2 K_1(r/\ell ) \rbrace +G_1 \lbrace 2 I_1 (r/\ell ) - (r/\ell )I_0(r/\ell ) \\ &\quad +(r/\ell )^2 I_1(r/\ell ) \rbrace \Bigr ] \sin \theta ,\end{aligned}$$
(A7)
$$\begin{aligned} csT_{2r}&= \frac{1}{\ell } \Bigl \lbrace -F_1 \bigl [ (\ell /r) K_1(r/\ell ) + K_0(r/\ell )\bigr ] \\ &+\quad G_1 \bigl [ I_0(r/\ell )-(\ell /r)I_1(r/\ell )\bigr ] \Bigr \rbrace \sin \theta ,\end{aligned}$$
(A8)
$$\begin{aligned} csT_{2\theta }= \frac{1}{r}\bigl [G_1 I_1(r/\ell )+F_1 K_1(r/\ell )\bigr ] \cos \theta , \end{aligned}$$
(A9)
$$\begin{aligned} uT_{2r}= -\frac{1}{r}\bigl [G_1 I_1(r/\ell )+F_1 K_1(r/\ell )\bigr ]\cos \theta , \end{aligned}$$
(A10)
$$\begin{aligned} uT_{2\theta }&= -\frac{1}{r}\Bigl [G_1 \lbrace I_1(r/\ell )-(r/\ell )I_0(r/\ell )\rbrace \\ &\quad +F_1\lbrace K_1(r/\ell )+(r/\ell )K_0(r/\ell )\rbrace \Bigr ]\sin \theta ,\end{aligned}$$
(A11)
$$\begin{aligned} sT_{3r}&= {} \frac{1}{r^2}\Bigl [E_1 \lbrace (r/\ell )I_0(r/\ell )-2I_1(r/\ell )\rbrace \\ &\quad -H_1 \lbrace (r/\ell )K_0(r/\ell )+2K_1(r/\ell ) \rbrace \Bigr ] \sin \theta ,\end{aligned}$$
(A12)
$$\begin{aligned} sT_{3\theta }&= {} \frac{1}{r^2}\Bigl [E_1 \lbrace 2I_1(r/\ell )-(r/\ell )I_0 (r/\ell )\rbrace \\ &\quad +H_1 \lbrace (r/\ell )K_0 (r/\ell )+2K_1 (r/\ell ) \rbrace \Bigr ] \sin \theta ,\end{aligned}$$
(A13)
$$\begin{aligned} sT_{3r\theta }&= \frac{1}{r^2} \Bigl [E_1 \lbrace 2I_1(r/\ell )-(r/\ell )I_0(r/\ell ) \rbrace \\ &\quad +H_1 \lbrace 2K_1(r/\ell )+(r/\ell )K_0(r/\ell ) \rbrace \Bigr ] \cos \theta ,\end{aligned}$$
(A14)
$$\begin{aligned} sT_{3\theta r}&= \frac{1}{r^2} \Bigl [E_1 \lbrace (2+(r/\ell )^2)I_1(r/\ell )-(r/\ell )I_0(r/\ell ) \rbrace \\ &\quad + H_1 \lbrace (2+(r/\ell )^2)K_1(r/\ell )+(r/\ell )K_0(r/\ell ) \rbrace \Bigr ] \cos \theta ,\end{aligned}$$
(A15)
$$\begin{aligned} csT_{3r}&= uT_{3\theta } = \frac{1}{\ell }\Bigl [E_1 \lbrace I_0(r/\ell )-(\ell /r)I_1(r/\ell ) \rbrace \\ &\quad -H_1 \lbrace K_0(r/\ell )+(\ell /r)K_1(r/\ell )\rbrace \Bigr ] \cos \theta ,\end{aligned}$$
(A16)
$$\begin{aligned} csT_{3\theta }&= -uT_{3r}= -\frac{1}{r}\bigl [E_1 I_1(r/\ell )+H_1 K_1(r/\ell )\bigr ] \sin \theta ,\end{aligned}$$
(A17)
$$\begin{aligned} sT_{4r}&= \frac{1}{r^2}\Bigl [G_n \lbrace (n-n^2)I_n(r/\ell )-n(r/\ell )I_{n+1}(r/\ell )\rbrace \\ &\quad +F_n \lbrace (n-n^2)K_n(r/\ell )+n(r/\ell )K_{n+1}(r/\ell )\rbrace \Bigr ] \cos (n\theta ),\end{aligned}$$
(A18)
$$\begin{aligned} sT_{4\theta }&= \frac{1}{r^2}\Bigl [G_n \lbrace (n^2-n)I_n(r/\ell )+n(r/\ell )I_{n+1}(r/\ell )\rbrace \\ &\quad +F_n \lbrace (n^2-n)K_n(r/\ell )-n(r/\ell )K_{n+1}(r/\ell )\rbrace \Bigr ] \cos (n\theta ),\end{aligned}$$
(A19)
$$\begin{aligned} sT_{4r\theta }&= \frac{1}{r^2}\Bigl [G_n \lbrace (n^2-n)I_n(r/\ell )-(r/\ell )I_{n+1}(r/\ell )\rbrace \\&\quad +F_n \lbrace (n^2-n)K_n(r/\ell )+(r/\ell )K_{n+1}(r/\ell )\rbrace \Bigr ] \sin (n\theta ),\end{aligned}$$
(A20)
$$\begin{aligned} sT_{4\theta r}&= \frac{1}{r^2}\Bigl [G_n \lbrace (n^2-n+(r/\ell )^2)I_n(r/\ell )-(r/\ell )I_{n+1}(r/\ell )\rbrace \\ &\quad +F_n \lbrace (n^2-n+(r/\ell )^2)K_n(r/\ell )+(r/\ell )K_{n+1}(r/\ell )\rbrace \Bigr ] \sin (n\theta ),\end{aligned}$$
(A21)
$$\begin{aligned} csT_{4r}&= uT_{4\theta }=\frac{1}{\ell }\Bigl [G_n \lbrace I_{n+1}(r/\ell )+n(\ell /r)I_n(r/\ell ) \rbrace \\ &\quad +F_n \lbrace -K_{n+1}(r/\ell )+n(\ell /r)K_n(r/\ell ) \rbrace \Bigr ] \sin (n\theta )\end{aligned}$$
(A22)
$$\begin{aligned} csT_{4\theta }&=-uT_{4r} = \frac{n}{r}\bigl [G_nI_n(r/\ell )+F_n K_n(r/\ell )\bigr ]\cos (n\theta ),\end{aligned}$$
(A23)
$$\begin{aligned} sT_{5r}&= \frac{1}{r^2}\Bigl [E_n \lbrace (n^2-n)I_n(r/\ell )+n(r/\ell )I_{n+1}(r/\ell )\rbrace \\ &\quad +H_n \lbrace (n^2-n)K_n(r/\ell )-n(r/\ell )K_{n+1}(r/\ell )\rbrace \Bigr ] \sin (n\theta ),\end{aligned}$$
(A24)
$$\begin{aligned} sT_{5\theta }&= \frac{1}{r^2}\Bigl [E_n \lbrace (n-n^2)I_n(r/\ell )-n(r/\ell )I_{n+1}(r/\ell )\rbrace \\ &\quad +H_n \lbrace (n-n^2)K_n(r/\ell )+n(r/\ell )K_{n+1}(r/\ell )\rbrace \Bigr ] \sin (n\theta ),\end{aligned}$$
(A25)
$$\begin{aligned} sT_{5r\theta }&= \frac{1}{r^2}\Bigl [E_n \lbrace (n^2-n)I_n(r/\ell )-(r/\ell )I_{n+1}(r/\ell )\rbrace \\ &\quad +H_n \lbrace (n^2-n)K_n(r/\ell )+(r/\ell )K_{n+1}(r/\ell )\rbrace \Bigr ] \cos (n\theta ),\end{aligned}$$
(A26)
$$\begin{aligned} sT_{5\theta r}&= \frac{1}{r^2}\Bigl [E_n \lbrace (n^2-n+(r/\ell )^2)I_n(r/\ell )-(r/\ell )I_{n+1}(r/\ell )\rbrace \\ &\quad + H_n \lbrace (n^2-n+(r/\ell )^2)K_n(r/\ell )+(r/\ell )K_{n+1}(r/\ell )\rbrace \Bigr ] \cos (n\theta ),\end{aligned}$$
(A27)
$$\begin{aligned} csT_{5r}&= uT_{5\theta } = \frac{1}{\ell }\Bigl [E_n \lbrace I_{n+1}(r/\ell )+n(\ell /r)I_n(r/\ell ) \rbrace \\ &\quad +H_n \lbrace -K_{n+1}(r/\ell )+n(\ell /r)K_n(r/\ell ) \rbrace \Bigr ] \cos (n\theta )\end{aligned}$$
(A28)
$$\begin{aligned} csT_{5\theta }&= -uT_{5r}= -\frac{n}{r}\bigl [E_nI_n(r/\ell )+H_n K_n(r/\ell )\bigr ]\sin (n\theta ). \end{aligned}$$
(A29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandakkar, T.K. Tabulation of Mindlin–Airy stress potentials and the corresponding stress and displacement in polar co-ordinates in couple stress elasticity. Sādhanā 48, 24 (2023). https://doi.org/10.1007/s12046-023-02076-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-023-02076-5

Keywords

Navigation