Skip to main content
Log in

Analytical solution of thermally developing heat transfer in circular and parallel plates microchannels

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The heat transfer characteristics of the thermally developing flow in the circular and parallel plates microchannels under the constant wall temperature and the constant heat flux are studied analytically. The energy equations are solved by using the separation of variables combined with the Gram–Schmidt orthogonalization. The effect of the number of eigenvalues on the calculation accuracy of the local Nusselt number is first determined. The temperature distribution and the heat transfer coefficient at the entrance region are calculated considering the effects of the rarefaction (0 < Kn < 0.1) and the axial heat conduction (Pe > 50). It is found that the axial heat conduction can dramatically improve the heat transfer of the thermally developing flow when the Peclet number is less than 250. But when the Peclet number is greater than 500, the effect of the axial heat conduction can be omitted. Enhancing the rarefaction would weaken the influence of the axial heat conduction on the heat transfer, and the difference of the local Nusselt number between the two boundary conditions decreases as increasing Kn. Enhancing fluid axial heat conduction would increase the thermal entrance length. The thermal entrance length of the microtube is 3–4 times that of the parallel plates microchannel, and the correlations of the thermal entrance lengths are developed, which may provide guidance for thermal design and optimization of microchannel heat sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Abbreviations

c p :

Specific heat (J kg−1 K−1)

C n :

Coefficient in Eq. (16)

D h :

Hydraulic diameter (m)

h :

Convective heat transfer coefficient (W m−2 K−1)

k :

Parameter defined by Eq. (39)

Kn :

Knudsen number

Kn u :

Modified Knudsen number = Kn(2–σv)/σv

Nu :

Nusselt number

p :

Geometry parameter

Pe :

Peclet number

Pr :

Prandtl number

Q :

Internal heat generation (W m−3)

q :

Heat flux (W m−2)

r :

R-Coordinate (m)

T :

Temperature (K)

u :

Fluid velocity (m s−1)

x :

X-Coordinate (m)

x*:

Non-dimensional length = x/(DhPe)

y :

Y-Coordinate (m)

β :

Coefficient of thermal expansion (K−1)

γ :

Ratio of specific heats

θ :

Dimensionless temperature

κ :

Fluid thermal conductivity (W m−1 K−1)

λ :

Mean free path (m)

\({\uplambda }_{{\text{n}}}^{{2}}\) :

Eigenvalue

μ :

Dynamic viscosity (N s m−2)

ρ :

Fluid density (kg m−3)

σ v :

Tangential momentum accommodation coefficient

σ T :

Thermal accommodation coefficient

Φ:

Viscous dissipation function

\(\phi_{n}\) :

Eigenfunction

:

Fully developed region

c:

Microtube

m:

Mean

p:

Parallel plates microchannel

w:

Wall

in:

Inlet

CM:

Circular microchannel

PPM:

Parallel plates microchannel

References

  1. Agrawal A, Kushwaha H M and Jadhav R S 2020 Microscale flow and heat transfer. Springer International Publishing, Cham

    Book  Google Scholar 

  2. Bennett T D 2019 Correlations for the Graetz problem in convection – Part 1: for round pipes and parallel plates. Int. J. Heat Mass Transf. 136: 832–841

    Article  Google Scholar 

  3. Shah R K and London A L 1978 Laminar flow forced convection in ducts, Suppl. l, Advanced Heat Transfer. New York: Academic Press

  4. Barron R F, Wang X, Ameel T and Warrington R O 1997 The Graetz problem extended to slip-flow. Int. J. Heat Mass Transf. 40(8): 1817–1823

    Article  MATH  Google Scholar 

  5. Barron R F, Wang X, Warrington R O and Ameel T A 1996 Evaluation of the eigenvalues for the graetz problem in slip-flow. Int. Commun. Heat Mass Transf. 23(4): 563–574

    Article  Google Scholar 

  6. Ameel T A, Wang X, Barron R F and Warrington R O 1997 Laminar forced convection in a circular tube with constant heat flux and slip flow. Microsc. Thermophys. Eng. 1(4): 303–320

    Article  Google Scholar 

  7. Larrode F E, Housiadas C and Drossinos Y 2000 Slip-flow heat transfer in circular tubes. Int. J. Heat Mass Transf. 43: 2669–2680

    Article  MATH  Google Scholar 

  8. Tunc G and Bayazitoglu Y 2001 Heat transfer in microtubes with viscous dissipation. Int. J. Heat Mass Transf. 44(13): 2395–2403

    Article  MATH  Google Scholar 

  9. Xu F and Ma H 2012 Analytical solution of the Graetz problem extended to slip-flow in microtube. J. Heat Transf. 134(10): 2–3

    Article  Google Scholar 

  10. Duan Z and He B 2014 Extended Reynolds analogy for slip and transition flow heat transfer in microchannels and nanochannels. Int. Commun. Heat Mass Transf. 56: 25–30

    Article  Google Scholar 

  11. Hooman K, Li J and Dahari M 2016 Slip flow forced convection through microducts of arbitrary cross-section: Heat and momentum analogy. Int. Commun. Heat Mass Transf. 71: 176–179

    Article  Google Scholar 

  12. Chalhub D J N M, Sphaier L A and Alves L S D B 2016 Integral transform solution for thermally developing slip-flow within isothermal parallel plates. Comput. Therm. Sci. 8(2): 147–161

    Article  Google Scholar 

  13. Haddout Y, Essaghir E, Oubarra A and Lahjomri J 2018 Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction. Indian J. Phys. 92(6): 741–755

    Article  MATH  Google Scholar 

  14. Lahjomri J, Oubarra A and Alemany A 2002 Heat transfer by laminar Hartmann flow in thermal entrance eregion with a step change in wall temperatures: the Graetz problem extended. Int. J. Heat Mass Transf. 45(5): 1127–1148

    Article  MATH  Google Scholar 

  15. Kalyoncu G and Barisik M 2016 The extended Graetz problem for micro-slit geometries; analytical coupling of rarefaction, axial conduction and viscous dissipation. Int. J. Therm. Sci. 110: 261–269

    Article  Google Scholar 

  16. Saha S K, Agrawal A and Soni Y 2017 Heat transfer characterization of rhombic microchannel for H1 and H2 boundary conditions. Int. J. Therm. Sci. 111: 223–233

    Article  Google Scholar 

  17. Kuddusi L and Cetegen E 2009 Thermal and hydrodynamic analysis of gaseous flow in trapezoidal silicon microchannels. Int. J. Therm. Sci. 48(2): 353–362

    Article  Google Scholar 

  18. Tso C P, Sheela-Francisca J and Hung Y M 2010 Viscous dissipation effects of power-law fluid flow within parallel plates with constant heat fluxes. J. Non-Newtonian Fluid Mech. 165(11–12): 625–630

    Article  MATH  Google Scholar 

  19. Chen S 2010 Lattice Boltzmann method for slip flow heat transfer in circular microtubes: Extended Graetz problem. Appl. Math. Comput. 217(7): 3314–3320

    MathSciNet  MATH  Google Scholar 

  20. Hong C, Asako Y and Suzuki K 2011 Heat transfer characteristics of gaseous slip flow in concentric micro-annular tubes. J. Heat Transf. 133

  21. Kabar Y, Bessaïh R and Rebay M 2013 Conjugate heat transfer with rarefaction in parallel plates microchannel. Superlattice Microst. 60: 370–388

    Article  Google Scholar 

  22. Loussif N and Orfi J 2014 Simultaneously developing laminar flow in an isothermal micro-tube with slip flow models. Heat Mass Transf. 50: 573–582

    Article  Google Scholar 

  23. Haase A S, Chapman S J, Tsai P A, Lohse D and Lammertink R G 2015 The Graetz–Nusselt problem extended to continuum flows with finite slip. J. Fluid Mech. 764

  24. Kumar R and Mahulikar S P 2021 Effect of density variation on rarefied and non-rarefied gaseous flows in developing region of microtubes. Iranian J. Sci. Technol. Trans. Mech. Eng. 45(2): 415–425

  25. Şen S 2019 Numerical investigation of the effect of second order slip flow conditions on interfacial heat transfer in micro pipes. Sadhana – Acad. Proceed. Eng. Sci. 44(7)

  26. Saghafian M, Saberian I, Rajabi R and Shirani E 2015 A numerical study on slip flow heat transfer in micro-poiseuille flow using perturbation method. J. Appl. Fluid Mech. 8(1): 123–132

    Google Scholar 

  27. Yu F, Wang T and Zhang C 2018 Effect of axial conduction on heat transfer in a rectangular microchannel with local heat flux. J. Therm. Sci. Technol. 13(1): 1–13

    Article  Google Scholar 

  28. Hemadri V, Biradar G S, Shah N, Garg R, Bhandarkar U V and Agrawal A 2018 Experimental study of heat transfer in rarefied gas flow in a circular tube with constant wall temperature. Exp. Therm. Fluid Sci. 93: 326–333

    Article  Google Scholar 

  29. Tada S and Ichimiya K 2007 Numerical simulation of forced convection in a porous circular tube with constant wall heat flux: An extended Graetz problem with viscous dissipation. Chem. Eng. Technol. 30(10): 1362–1368

    Article  Google Scholar 

  30. Renksizbulut M and Niazmand H 2016 Laminar flow and heat transfer in the entrance region. J. Heat Transf. 128: 63–74

    Article  Google Scholar 

  31. Avci M and Aydin O 2018 Analysis of extended micro-Graetz problem in a microtube. Sadhana – Acad. Proceed. Eng. Sci. 43(7): 1–9

    MathSciNet  Google Scholar 

  32. Barişik M, Yazicioğlu A G, Çetin B and Kakaç S 2015 Analytical solution of thermally developing microtube heat transfer including axial conduction, viscous dissipation, and rarefaction effects. Int. Commun. Heat Mass Transf. 67: 81–88

    Article  Google Scholar 

  33. Telles A S, Queiroz E M and Elmôr Filho G 2001 Solutions of the extended Graetz problem. Int. J. Heat Mass Transf. 44(2): 471–483

    Article  MATH  Google Scholar 

  34. Jambal O, Shigechi T, Davaa G and Momoki S 2005 Effects of viscous dissipation and fluid axial heat conduction on heat transfer for non-Newtonian fluids in ducts with uniform wall temperature: Part I: Parallel plates and circular ducts. Int. Commun. Heat Mass Transf. 32(9): 1165–1173

    Article  Google Scholar 

  35. Renksizbulut M, Niazmand H and Tercan G 2006 Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. Int. J. Therm. Sci. 45(9): 870–881

    Article  Google Scholar 

  36. Jeong H E and Jeong J T 2006 Extended Graetz problem including axial conduction and viscous dissipation in microtube. J. Mech. Sci. Technol. 20(1): 158–166

    Article  Google Scholar 

  37. Myong R S, Lockerby D A and Reese J M 2006 The effect of gaseous slip on microscale heat transfer: An extended Graetz problem. Int. J. Heat Mass Transf. 49(15–16): 2502–2513

    Article  MATH  Google Scholar 

  38. Hettiarachchi H D M, Golubovic M, Worek W M and Minkowycz W J 2008 Three- dimensional laminar slip-flow and heat transfer in a rectangular microchannel with constant wall temperature. Int. J. Heat Mass Transf. 51(21–22): 5088–5096

    Article  MATH  Google Scholar 

  39. van Rij J, Ameel T and Harman T 2009 The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer. Int. J. Therm. Sci. 48: 271–281

    Article  Google Scholar 

  40. Saghafian M, Saberian I, Rajabi R and Shirani E 2015 A numerical study on slip flow heat transfer in micro-poiseuille flow using perturbation method. J. Appl. Fluid Mech. 8: 123–132

    Google Scholar 

  41. Loussif N and Orfi J 2015 Slip flow heat transfer in micro-tubes with viscous dissipation. Desalin. Water Treat. 53: 1263–1274

    Google Scholar 

  42. Ramadan K M, Kamil M and Bataineh M S 2019 Conjugate heat transfer in a microchannel simultaneously developing gas flow: a vorticity stream function-based numerical analysis. J. Therm. Sci. Eng. Appl. 11

  43. Sun Q, Choi K S and Mao X 2020 An analytical solution of convective heat transfer in microchannel or nanochannel. Int. Commun. Heat Mass Transf. 117: 104766

    Article  Google Scholar 

  44. Bejan A 2013 Convection Heat Transfer. John Wiley and Sons, New York

    Book  MATH  Google Scholar 

  45. Duan Z and He B 2018 Further study on second-order slip flow models in channels of various cross sections. Heat Transf. Eng. 39(11): 933–945

    Article  Google Scholar 

  46. Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions. Dover Publications, New York

    MATH  Google Scholar 

  47. Cetin B and Bayer O 2011 Evaluation of Nusselt number for a flow in a microtube using second-order slip model. Therm. Sci. 15(suppl. 1): 103–109

    Article  Google Scholar 

  48. Su L, Duan Z, He B, Ma H, Ning X, Ding G and Cao Y 2020 Heat transfer characteristics of thermally developing flow in rectangular microchannels with constant wall temperature. Int. J. Therm. Sci. 155: 106412

    Article  Google Scholar 

  49. Colin S 2012 Gas microflows in the slip flow regime: A critical review on convective heat transfer. J. Heat Transf. 134(2)

Download references

Acknowledgements

This research was supported by the Talents Special Fund of China Three Gorges University (No. 8210403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Yu.

Appendix A: Steps of Gram-Schmidt orthogonalization to obtain C n

Appendix A: Steps of Gram-Schmidt orthogonalization to obtain C n

For the eigenfunctions sequence {ϕn}, assuming that the orthogonalized function sequences are {gn}, the relationship between the above two is as follows

$$ g_{1} = \phi_{1} $$
(A-1)
$$ g_{2} = \phi_{2} - a_{21} g_{1} = \phi_{2} - a_{21} \phi_{1} $$
(A-2)
$$ \begin{gathered} g_{3} = \phi_{3} - a_{32} g_{2} - a_{31} g_{1} = \phi_{3} - a_{32} \left( {\phi_{2} - a_{21} \phi_{1} } \right) - a_{31} \phi_{1} \hfill \\ \, = \phi_{3} - a_{32} \phi_{2} + \left( {a_{32} a_{21} - a_{31} } \right)\phi_{1} \hfill \\ \end{gathered} $$
(A-3)
$$ g_{n} = \phi_{n} - \sum\limits_{m = 1}^{n - 1} {a_{nm} } g_{m} $$
(A-4)

For the orthogonal function sequences {gn}, there is the following orthogonal property when ij

$$ \int_{0}^{1} {g_{i} g_{j} } {\text{d}}Y = 0 $$
(A-5)

Substituting (A-1) and (A-2) into (A-5) yields

$$ \int_{0}^{1} {g_{1} g_{2} } {\text{d}}Y = \int_{0}^{1} {\phi_{1} \left( {\phi_{2} - a_{21} g_{1} } \right)} {\text{d}}Y = \int_{0}^{1} {\phi_{1} \phi_{2} } {\text{d}}Y - a_{21} \int_{0}^{1} {\phi_{1} g_{1} } {\text{d}}Y = 0 $$
(A-6)

then

$$ a_{21} = \frac{{\int_{0}^{1} {\phi_{1} \phi_{2} } {\text{d}}Y}}{{\int_{0}^{1} {\phi_{1} g_{1} } {\text{d}}Y}} = \frac{{ < \phi_{1} ,\phi_{2} > }}{{ < \phi_{1} ,g_{1} > }} $$
(A-7)

More generally,

$$ a_{nm} = \frac{{ < \phi_{n} ,g_{m} > }}{{ < g_{m} ,g_{m} > }} $$
(A-8)

Based on the inlet boundary condition, setting the coefficient of the eigenfunctions after the orthogonalization is Bn, namely

$$ \sum\limits_{n = 1}^{\infty } {C_{n} \phi_{n} (Y)} = \sum\limits_{n = 1}^{\infty } {B_{n} g_{n} (Y)} $$
(A-9)

and

$$ \sum\limits_{n = 1}^{\infty } {B_{n} g_{n} (Y)} = \theta (0,Y) $$
(A-10)

The coefficient Bn can be obtained based on the characteristics of the orthogonal function:

$$ B_{n} = \frac{{\int_{0}^{1/A} {\theta (0,Y)g_{n} {\text{d}}Y} }}{{\int_{0}^{1/A} {g_{n}^{2} {\text{d}}Y} }} $$
(A-11)

According to (A-1)–(A-4), we have

$$ \begin{aligned} \sum\limits_{{n = 1}}^{\infty } {B_{n} g_{n} (Y)} & = B_{1} \phi _{1} + B_{2} \left( {\phi _{2} - a_{{21}} \phi _{1} } \right) + B_{3} \left( {\phi _{3} - a_{{32}} \phi _{2} } \right. \\ & \quad \left. { + a_{{32}} a_{{21}} \phi _{1} - a_{{31}} \phi _{1} } \right) + B_{4} \left( {\phi _{4} - a_{{43}} \phi _{3} + a_{{43}} a_{{32}} \phi _{2} } \right. \\ & \quad \left. { - a_{{43}} a_{{32}} a_{{21}} \phi _{1} + a_{{43}} a_{{31}} \phi _{1} - a_{{42}} \phi _{2} + a_{{42}} a_{{21}} \phi _{1} - a_{{41}} \phi _{1} } \right) \\ & \quad + \cdots B_{n} \left( {\phi _{n} - \sum\limits_{{m = 1}}^{{m - 1}} {a_{{nm}} } g_{m} } \right) \\ \end{aligned} $$
(A-12)

After determining Bn, Cn can be calculated according to (A-9), that is

$$ \begin{aligned} & C_{1} = B_{1} - B_{2} k_{1,2} - \cdots - B_{N} k_{1,N} = B_{1} - \sum\limits_{i = n + 1}^{N} {B_{i} k_{1,i} } \\ & \vdots \\ & C_{n} = B_{n} - B_{n + 1} k_{n,n + 1} - \cdots - B_{N} k_{n,N} = B_{n} - \sum\limits_{i = n + 1}^{N} {B_{i} k_{n,i} } \\ & \vdots \\ & C_{N} = B_{N} \\ \end{aligned} $$
(A-13)

where

$$ \begin{aligned} k_{n,m} &= a_{m,n} k_{n,n} - a_{m,n + 1} k_{n,n + 1} - \cdots - a_{m,m - 1} k_{n,m - 1} = a_{m,n}\\&\quad - \sum\limits_{i = n + 1}^{m - 1} {a_{m,i} k_{n,i} } \\ k_{n,n} &= 1 \\ \end{aligned} $$
(A-14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., He, B. & Yu, W. Analytical solution of thermally developing heat transfer in circular and parallel plates microchannels. Sādhanā 47, 219 (2022). https://doi.org/10.1007/s12046-022-01951-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01951-x

Keywords

Navigation