Skip to main content

Advertisement

Log in

A study into the sustainability efficiency of supply chain network based on economic, social, and environmental trade-offs

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Assessing the sustainability efficiency of a supply chain network (SCN) is a complex issue due to the inherent conflict of interest among components. In these systems, there are two levels of conflict of interest: on the one hand, network players, including suppliers, manufacturers, retailers, etc., have conflicting interests. On the other hand, the three sustainability goals, namely economic, social and environmental, are not in line with each other. Improvement in one of these goals is not possible while keeping the others constant. Using hybrid models of game network data envelopment analysis (GNDEA), this study presented a new framework to measure an Iranian pharmaceutical company’s supply chain network sustainability efficiency (SCNSE). This was done considering two levels of conflict of interest simultaneously, which is the main contribution of this study. The proposed model also measures the performance of components and the entire network in all three dimensions of sustainability. It enables managers to gain a better insight into the sustainability efficiency of an SCN and its individual components. Acquiring this knowledge allows managers to identify system weaknesses and design more effective improvement plans. Future studies can develop models for appraising the sustainability efficiency of an SCN under uncertain conditions considering different players.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Sarkis J 2020 Supply chain sustainability: learning from the COVID-19 pandemic. Int. J. Oper. Prod. Manag. 41: 63–73

    Article  Google Scholar 

  2. Wang X C, Jiang P, Yang L, Van Fan Y, Klemeš J J and Wang Y 2021 Extended water-energy nexus contribution to environmentally-related sustainable development goals. Renew. Sustain. Energy Rev. 150: 111485

    Article  Google Scholar 

  3. Balfaqih H, Nopiah Z M, Saibani N and Al-Nory M T 2016 Review of supply chain performance measurement systems: 1998–2015. Comput. Ind. 82: 135–150

    Article  Google Scholar 

  4. Matos S V, Schleper M C, Gold S and Hall J K 2020 The hidden side of sustainable operations and supply chain management: unanticipated outcomes, trade-offs and tensions. Int. J. Oper. Prod. Manag. 40: 1749–1770

    Article  Google Scholar 

  5. Tajbakhsh A and Hassini E 2015 Performance measurement of sustainable supply chains: a review and research questions. Int. J. Product. Perform. 64: 744–783

    Article  Google Scholar 

  6. Chen C and Yan H 2011 Network DEA model for supply chain performance evaluation. Eur. J. Oper. 213: 147–155

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen Y, Liang L and Yang F 2006 A DEA game model approach to supply chain efficiency. Ann. Oper. Res. 145: 5–13

    Article  MathSciNet  MATH  Google Scholar 

  8. Varsei M and Polyakovskiy S 2017 Sustainable supply chain network design: a case of the wine industry in Australia. Omega 66: 236–247

    Article  Google Scholar 

  9. Noveiri M J S, Kordrostami S and Amirteimoori A 2022 Performance analysis of sustainable supply networks with bounded, discrete, and joint factors. Environ. Dev. Sustain. 24: 238–270

    Article  Google Scholar 

  10. Boz I 2020 Measuring environmental, economic, and social sustainability index of tea farms in Rize Province, Turkey. Environ. Dev. Sustain. 22: 2545–2567

    Article  Google Scholar 

  11. Lee K H and Saen R F 2012 Measuring corporate sustainability management: a data envelopment analysis approach. Int. J. Prod. Econ. 140: 219–226

    Article  Google Scholar 

  12. Tajbakhsh A and Hassini E 2015 A data envelopment analysis approach to evaluate sustainability in supply chain networks. J. Clean. Prod. 105: 74–85

    Article  Google Scholar 

  13. Ka J M R, Ab N R and Lb K 2019 A review on supply chain performance measurement systems. Procedia Manuf. 30: 40–47

    Article  Google Scholar 

  14. Kao C 2014 Network data envelopment analysis: a review. Eur. J. Oper. 239: 1–16

    Article  MathSciNet  MATH  Google Scholar 

  15. Acquaye A, Ibn-Mohammed T, Genovese A, Afrifa G A, Yamoah F A and Oppon E 2018 A quantitative model for environmentally sustainable supply chain performance measurement. Eur. J. Oper. 269: 188–205

    Article  MathSciNet  MATH  Google Scholar 

  16. Govindan K, Rajeev A, Padhi S S and Pati R K 2020 Supply chain sustainability and performance of firms: a meta-analysis of the literature. Transport Res. E-Log. 137: 101923

    Article  Google Scholar 

  17. Zhang Q, Shah N, Wassick J, Helling R and Van Egerschot P 2014 Sustainable supply chain optimisation: an industrial case study. Comput. Ind. Eng. 74: 68–83

    Article  Google Scholar 

  18. Sittisak P and Ekasingh B 2015 Trade-offs between the economic, social and environmental objectives in optimal resource management in the fang watershed, Chiang Mai Province, Thailand. Agric. Agric. Sci. Procedia 5: 38–45

    Google Scholar 

  19. Huo B, Gu M and Wang Z 2019 Green or lean? A supply chain approach to sustainable performance. J. Clean. Prod. 216: 152–166

    Article  Google Scholar 

  20. Haffar M and Searcy C 2019 How organizational logics shape trade-off decision-making in sustainability. Long Range Plann. 52: 101912

    Article  Google Scholar 

  21. Liang L, Yang F, Cook W D and Zhu J 2006 DEA models for supply chain efficiency evaluation. Ann. Oper. Res. 145: 35–49

    Article  MathSciNet  MATH  Google Scholar 

  22. Li H, Chen C, Cook W D, Zhang J and Zhu J 2018 Two-stage network DEA: Who is the leader? Omega 74: 15–19

    Article  Google Scholar 

  23. Esfandiari M, Hafezalkotob A, Khalili-Damghani K and Amirkhan M 2017 Robust two-stage DEA models under discrete uncertain data. Int. J. Manag. Sci. 12: 216–224

    Google Scholar 

  24. Khodakarami M, Shabani A, Saen R F and Azadi M 2015 Developing distinctive two-stage data envelopment analysis models: an application in evaluating the sustainability of supply chain management. Measurement 70: 62–74

    Article  Google Scholar 

  25. Jauhar S K, Pant M and Nagar A K 2017 Sustainable educational supply chain performance measurement through DEA and differential evolution: a case on Indian HEI. J. Comput. Sci. 19: 138–152

    Article  Google Scholar 

  26. Haghighi S M, Torabi S and Ghasemi R 2016 An integrated approach for performance evaluation in sustainable supply chain networks (with a case study). J. Clean. Prod. 137: 579–597

    Article  Google Scholar 

  27. Badiezadeh T, Saen R F and Samavati T 2018 Assessing sustainability of supply chains by double frontier network DEA: a big data approach. Comput. Oper. Res. 98: 284–290

    Article  MathSciNet  MATH  Google Scholar 

  28. Ramezankhani M J, Torabi S A and Vahidi F 2018 Supply chain performance measurement and evaluation: a mixed sustainability and resilience approach. Comput. Ind. Eng. 126: 531–548

    Article  Google Scholar 

  29. Tajbakhsh A and Hassini E 2018 Evaluating sustainability performance in fossil-fuel power plants using a two-stage data envelopment analysis. Energy Econ. 74: 154–178

    Article  Google Scholar 

  30. Gong Y, Liu J and Zhu J 2019 When to increase firms’ sustainable operations for efficiency? A data envelopment analysis in the retailing industry. Eur. J. Oper. 277: 1010–1026

    Article  MathSciNet  MATH  Google Scholar 

  31. De D, Chowdhury S, Dey P K and Ghosh S K 2020 Impact of lean and sustainability oriented innovation on sustainability performance of small and medium sized enterprises: a data envelopment analysis-based framework. Int. J. Prod. Econ. 219: 416–430

    Article  Google Scholar 

  32. Wang H, Pan C, Wang Q and Zhou P 2020 Assessing sustainability performance of global supply chains: an input–output modeling approach. Eur. J. Oper. 285: 393–404

    Article  MATH  Google Scholar 

  33. Jomthanachai S, Wong W P and Lim C P 2021 A coherent data envelopment analysis to evaluate the efficiency of sustainable supply chains. IEEE Trans. Eng. Manag. https://doi.org/10.1109/TEM.2020.3046485

    Article  Google Scholar 

  34. Amirkhan M, Didehkhani H, Khalili-Damghani K and Hafezalkotob A 2018 Measuring performance of a three-stage network structure using data envelopment analysis and Nash bargaining game: a supply chain application. Int. J. Inf. Technol. Decis. Mak. 17: 1429–1467

    Article  Google Scholar 

  35. Khalili-Damghani K and Taghavifard M 2012 A three-stage fuzzy DEA approach to measure the performance of a serial process including JIT practices, agility indices, and goals in supply chains. Int. J. Serv. Ind. Manag. 13: 147–188

    Google Scholar 

  36. Zhou Z, Sun L, Yang W, Liu W and Ma C 2013 A bargaining game model for efficiency decomposition in the centralized model of two-stage systems. Comput. Ind. Eng. 64: 103–108

    Article  Google Scholar 

  37. Linton J D, Klassen R and Jayaraman V 2007 Sustainable supply chains: an introduction. J. Oper. Manag. 25: 1075–1082

    Article  Google Scholar 

  38. Jørgensen T H 2008 Towards more sustainable management systems: through life cycle management and integration. J. Clean. Prod. 16: 1071–1080

    Article  Google Scholar 

  39. Veleva V and Ellenbecker M 2001 Indicators of sustainable production: framework and methodology. J. Clean. Prod. 9: 519–549

    Article  Google Scholar 

  40. Morhardt J E, Baird S and Freeman K 2002 Scoring corporate environmental and sustainability reports using GRI 2000, ISO 14031 and other criteria. Corp. Soc. Responsib. 9: 215–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Yousefi Zenouz.

Appendices

Appendix A

Lemma 1

The feasible set S is compact and convex.

Proof 1

Since feasible set S is defined in a Euclidean space, the compactness condition has been met. To prove that the solution space is convex, assume:

$$ \begin{aligned} & \left( {w_{1}^{1\prime } , \ldots ,w_{D1}^{1\prime } ,w_{1}^{2\prime } , \ldots ,w_{D2}^{2\prime } ,w_{1}^{3\prime } , \ldots ,w_{D3}^{3\prime } ,w_{1}^{4\prime } , \ldots ,w_{D4}^{4\prime } ,v_{1}^{1\prime } , \ldots ,v_{m}^{1\prime } } \right) \in S \\ & \left( {w_{1}^{1\prime \prime } , \ldots ,w_{D1}^{1\prime \prime } ,w_{1}^{2\prime \prime } , \ldots ,w_{D2}^{2\prime \prime } ,w_{1}^{3\prime \prime } , \ldots ,w_{D3}^{3\prime \prime } ,w_{1}^{4\prime \prime } , \ldots ,w_{D4}^{4\prime \prime } ,v_{1}^{\prime \prime } , \ldots ,v_{m}^{\prime \prime } } \right) \in S \\ \end{aligned} $$

According to this assumption and for each \(\lambda \in \left[ {0,1} \right]\) there is:

$$ \begin{aligned} & \lambda w_{d1}^{1\prime } + (1 - \lambda )w_{d1}^{1\prime \prime } > 0,\quad \forall d1 = 1, \ldots ,D1 \\ & \lambda w_{d2}^{2\prime } + (1 - \lambda )w_{d2}^{2\prime \prime } > 0,\quad \forall d2 = 1, \ldots ,D2 \\ & \lambda w_{d3}^{3\prime } + (1 - \lambda )w_{d3}^{3\prime \prime } > 0,\quad \forall d3 = 1, \ldots ,D3 \\ & \lambda w_{d4}^{4\prime } + (1 - \lambda )w_{d4}^{4\prime \prime } > 0,\quad \forall d4 = 1, \ldots ,D4 \\ & \lambda v_{i}^{\prime } + (1 - \lambda )v_{i}^{\prime \prime } > 0,\quad \forall i = 1, \ldots ,m \\ \end{aligned} $$

Therefore, based on the above assumptions, the feasible set is compact. Thus, in model (2) for the first constraint, there is:

$$ \frac{{\sum\nolimits_{d2 = 1}^{D2} {w_{d2}^{2} z_{d2j}^{2} } }}{{\sum\nolimits_{i = 1}^{m} {v_{i} x_{ij} } }} \le 1{ ; }\;\forall {\text{j}} = {1}, \ldots ,{\text{n}} \Rightarrow \sum\limits_{d2 = 1}^{D2} {w_{d2}^{2} z_{d2j}^{2} } \le \sum\limits_{i = 1}^{m} {v_{i} x_{ij} } \Rightarrow $$
$$ \begin{aligned} \sum\limits_{d2 = 1}^{D2} {w_{d2}^{2} z_{d2j}^{2} } & = \sum\limits_{{d2 = 1}}^{{D2 }} {\left( {\lambda w_{d2}^{2\prime } + (1 - \lambda )w_{d2}^{2\prime \prime } } \right)z_{d2j}^{2} } \\ & { = }\lambda \sum\limits_{d2 = 1}^{D2} {w_{d2}^{2\prime } z_{d2j}^{2} } + (1 - \lambda )\sum\limits_{d2 = 1}^{D2} {w_{d2}^{2\prime \prime } z_{d2j}^{2} } \le \lambda \sum\limits_{i = 1}^{m} {v_{i}^{\prime } x_{ij} } + (1 - \lambda )\sum\limits_{i = 1}^{m} {v_{i}^{\prime \prime } x_{ij} } \\ & = \sum\limits_{i = 1}^{m} {\left( {\lambda v_{i}^{\prime } + (1 - \lambda )v_{i}^{\prime \prime } } \right)} x_{ij} \\ \end{aligned} $$

Similarly, for the second and third constraints, there is:

$$ \begin{aligned} \sum\limits_{d3 = 1}^{D3} {w_{d3}^{3} z_{d3j}^{3} } & = \sum\limits_{d3 = 1}^{D3} {\left( {\lambda w_{d3}^{3\prime } + (1 - \lambda )w_{d3}^{3\prime \prime } } \right)z_{d3j}^{3} } \\ & = \lambda \sum\limits_{d3 = 1}^{D3} {w_{d3}^{3\prime } z_{d3j}^{3} } + (1 - \lambda )\sum\limits_{d3 = 1}^{D3} {w_{d3}^{3\prime \prime } z_{d3j}^{3} } \le \lambda \sum\limits_{i = 1}^{m} {v_{i}^{\prime } x_{ij} } + (1 - \lambda )\sum\limits_{i = 1}^{m} {v_{i}^{\prime \prime } x_{ij} } \\ & = \sum\limits_{i = 1}^{m} {\left( {\lambda v_{i}^{\prime } + (1 - \lambda )v_{i}^{\prime \prime } } \right)} x_{ij} \\ \end{aligned} $$
$$ \begin{aligned} \sum\limits_{d4 = 1}^{D4} {w_{d4}^{4} z_{d4j}^{4} } & = \sum\limits_{d4 = 1}^{D4} {\left( {\lambda w_{d4}^{4\prime } + (1 - \lambda )w_{d4}^{4\prime \prime } } \right)z_{d4j}^{4} } \\ & = \lambda \sum\limits_{{d4 = 1}}^{D4} {w_{d4}^{4\prime } z_{d4j}^{4} } + (1 - \lambda )\sum\limits_{{d4 = 1}}^{{D4 }} {w_{d4}^{4\prime \prime } z_{d4j}^{4} } \le \lambda \sum\limits_{i = 1}^{m} {v_{i}^{\prime } x_{ij} } + (1 - \lambda )\sum\limits_{i = 1}^{m} {v_{i}^{\prime \prime } x_{ij} } \\ & = \sum\limits_{i = 1}^{m} {\left( {\lambda v_{i}^{\prime } + (1 - \lambda )v_{i}^{\prime \prime } } \right)} x_{ij} \\ \end{aligned} $$

For the fourth, fifth, and sixth constraints, there are:

$$ \begin{aligned} \sum\limits_{d2 = 1}^{D2} {w_{d2}^{2} z_{d2o}^{2} } & \ge \theta_{\min ,o}^{Ec1} \sum\limits_{i = 1}^{m} {v_{i} x_{io} } \Rightarrow \\ & \quad \sum\limits_{{d2 = 1}}^{{D2 }} {\left[ {\lambda w_{d2}^{2\prime } + (1 - \lambda )w_{d2}^{2\prime \prime } } \right]z_{d2o}^{2} } \ge \theta_{\min ,o}^{Ec1} \sum\limits_{{i = 1}}^{m} {\left[ {\lambda v_{i}^{\prime } + (1 - \lambda )v_{i}^{\prime \prime } } \right]x_{io} } \, \\ \end{aligned} $$
$$ \begin{aligned} \sum\limits_{d3 = 1}^{D3} {w_{d3}^{3} z_{d3o}^{3} } & \ge \theta_{\min ,o}^{En1} \sum\limits_{i = 1}^{m} {v_{i} x_{io} } \Rightarrow \\ & \quad \sum\limits_{d3 = 1}^{D3} {\left[ {\lambda w_{d3}^{3\prime } + (1 - \lambda )w_{d3}^{3\prime \prime } } \right]z_{d3o}^{3} } \ge \theta_{\min ,o}^{En1} \sum\limits_{i = 1}^{m} {\left[ {\lambda v_{i}^{\prime } + (1 - \lambda )v_{i}^{\prime \prime } } \right]x_{io} } \\ \end{aligned} $$
$$ \begin{aligned} \sum\limits_{d4 = 1}^{D4} {w_{d4}^{4} z_{d4o}^{4} } & \ge \theta_{\min ,o}^{So1} \sum\limits_{i = 1}^{m} {v_{i} x_{io} } \Rightarrow \\ & \quad \sum\limits_{{d4 = 1}}^{{D4 }} {\left[ {\lambda w_{d4}^{4\prime } + (1 - \lambda )w_{d4}^{4\prime \prime } } \right]z_{d4o}^{4} } \ge \theta_{\min ,o}^{So1} \sum\limits_{i = 1}^{m} {\left[ {\lambda v_{i}^{\prime } + (1 - \lambda )v_{i}^{\prime \prime } } \right]x_{io} } \\ \end{aligned} $$

And for the last constraint, there is:

$$ \begin{aligned} & \sum\limits_{d2 = 1}^{{D2 }} {\left[ {\lambda w_{d2}^{2\prime } + (1 - \lambda )w_{d2}^{2\prime \prime } } \right]z_{d2o}^{2} } + \sum\limits_{{d3 = 1}}^{{D3 }} {\left[ {\lambda w_{d3}^{3\prime } + (1 - \lambda )w_{{d3 }}^{3\prime \prime } } \right]z_{d3o}^{3} } \\ & \quad + \sum\limits_{{d4 = 1}}^{{D4 }} {\left[ {\lambda w_{d4}^{4\prime } + (1 - \lambda )w_{d4}^{4\prime \prime } } \right]z_{d4o}^{4} } = \theta_{o}^{Sup*} \sum\limits_{i = 1}^{m} {\left[ {\lambda v_{i}^{\prime } + (1 - \lambda )v_{i}^{\prime \prime } } \right]x_{io} } \\ \end{aligned} $$

Therefore, for every \((d2 = 1,\ldots ,D2 )\), \((d3 = 1,\ldots ,D3 )\), \((d4 = 1,\ldots ,D4 )\),\((i = 1,\ldots ,m)\), there is:

$$ \begin{aligned} & \left( {\lambda w_{d2}^{2\prime } + (1 - \lambda )w_{d2}^{2\prime \prime } ,\lambda w_{d3}^{3\prime } + (1 - \lambda )w_{d3}^{3\prime \prime } } \right., \\ & \left. {\lambda w_{d4}^{4\prime } + (1 - \lambda )w_{d4}^{4\prime \prime } ,\lambda v_{i}^{\prime } + (1 - \lambda )v_{i}^{\prime \prime } } \right) \in S \\ \end{aligned} $$

which is equal to:

$$ \begin{aligned} & \lambda \left( {w_{1}^{2\prime } , \ldots ,w_{D2}^{2\prime } ,w_{1}^{3\prime } , \ldots ,w_{D3}^{3\prime } ,w_{1}^{4\prime } , \ldots ,w_{D4}^{4\prime } ,v_{1}^{\prime } , \ldots ,v_{i}^{\prime } } \right) \\ & \quad + (1 - \lambda )\left( {w_{1}^{2\prime \prime } , \ldots ,w_{D2}^{2\prime \prime } ,w_{1}^{3\prime \prime } , \ldots ,w_{D3}^{3\prime \prime } ,w_{1}^{4\prime \prime } , \ldots ,w_{D4}^{4\prime \prime } ,v_{1}^{\prime \prime } , \ldots ,v_{i}^{\prime \prime } } \right) \in S \\ \end{aligned} $$

Hence, the feasible set S is convex.

Appendix B Indicator selection survey questionnaire

2.1 Introduction

Thank you for agreeing to help us use your experience to select proper measures for the supply chain sustainability of the company. As you know, we are evaluating the sustainability efficiency of your company’s supply chain with a focus on supplier and manufacturer stages to determine the current status and see if we can Identify improvement initiatives. For this purpose, we have provided an attachment, which is the list of measures that have been collected through the literature review.

Please answer the following questions by writing your answer in your own words in the box provided. If you have any questions about this questionnaire, don’t hesitate to contact us.

Name:

 

Department:

Job position:

Date of employment:

Total work experience:

Highest education certification:

Field of Study:

2.2 Directions

  1. 1.

    Please indicate four questions as below:

    • Q1: Is the indicator aligned with goals and strategies?

    • Q2: Does the indicator have computational complexity?

    • Q3: Is the indicator actionable?

    • Q4: Is there reliable data to calculate the indicator?

  2. 2.

    Please select at least ten measures in each stage of the supply chain

  3. 3.

    Please sort them by priority and Note in the table below:

    figure a

Appendix C Table of the results

3.1 Results of SCN sustainability efficiency

DMU

The first scenario (cooperative model)

The second scenario (non-cooperative model)

\(\theta_{o}^{OC}\)

\(\theta_{o}^{{Sup* }}\)

\(\theta_{o}^{{Man* }}\)

\(\theta_{o}^{{Ec1 }}\)

\(\theta_{o}^{{En1 }}\)

\(\theta_{o}^{{So1 }}\)

\(\theta_{o}^{{Ec2 }}\)

\(\theta_{o}^{{En2 }}\)

\(\theta_{o}^{{So2 }}\)

\(\theta_{o}^{ON}\)

\(\theta_{o}^{{Sup* }}\)

\(\theta_{o}^{{Man* }}\)

\(\theta_{o}^{{En1 }}\)

\(\theta_{o}^{{So1 }}\)

\(\theta_{o}^{{Ec2 }}\)

\(\theta_{o}^{{En2 }}\)

\(\theta_{o}^{{So2 }}\)

\(\theta_{o}^{{En1 }}\)

1

0.89

0.42

1.00

0.46

0.40

0.40

0.60

0.51

1.00

1.0

1.0

1.0

1.00

1.00

0.64

0.24

0.47

0.99

2

1.00

0.53

1.00

0.56

0.52

0.52

0.79

0.54

0.99

0.9

0.8

1.0

0.72

0.71

0.82

0.87

0.50

0.98

3

0.83

0.70

0.86

0.71

0.69

0.69

0.45

0.50

0.84

0.9

0.8

1.0

0.65

0.65

0.75

0.57

0.46

1.00

4

0.79

0.87

0.71

0.86

0.87

0.87

0.00

0.68

0.58

1.0

1.0

1.0

0.84

0.86

0.99

0.77

0.68

0.89

5

0.82

0.81

0.78

0.80

0.81

0.81

0.19

0.79

0.55

1.0

0.9

1.0

0.77

0.79

0.91

0.00

0.91

0.61

6

0.85

0.74

0.88

0.74

0.74

0.74

0.00

0.84

0.71

0.9

0.8

1.0

0.64

0.65

0.75

0.00

0.81

0.82

7

0.85

0.52

0.96

0.54

0.51

0.52

0.00

0.92

0.78

0.9

0.8

1.0

0.69

0.69

0.80

0.00

0.81

0.82

8

0.86

0.83

0.73

0.83

0.83

0.83

0.01

0.70

0.59

0.9

0.9

1.0

0.72

0.73

0.85

0.37

0.67

0.82

9

0.91

0.86

0.85

0.85

0.86

0.86

0.00

0.82

0.69

1.0

1.0

1.0

0.83

0.86

0.99

0.98

0.78

0.82

10

0.88

0.86

0.85

0.86

0.85

0.85

0.41

0.91

0.53

1.0

1.0

1.0

0.84

0.86

0.99

0.55

0.93

0.58

11

0.86

0.62

0.97

0.63

0.61

0.62

0.00

1.00

0.66

0.9

0.8

1.0

0.71

0.72

0.83

0.00

0.86

0.72

12

1.00

0.75

1.00

0.75

0.75

0.75

0.00

0.96

0.81

1.0

1.0

1.0

0.82

0.84

0.97

0.29

0.81

0.82

13

1.00

0.89

0.83

0.87

0.89

0.89

0.00

0.72

0.54

1.0

1.0

1.0

0.83

0.87

1.00

0.37

0.66

0.59

14

1.00

0.74

0.95

0.73

0.74

0.74

0.00

0.60

0.83

1.0

0.9

1.0

0.79

0.82

0.94

0.00

0.55

0.91

15

0.94

0.98

0.81

0.97

0.98

0.98

0.50

0.78

0.66

1.0

1.0

1.0

0.84

0.86

0.99

0.81

0.85

0.74

16

1.00

1.00

0.82

0.99

1.00

1.00

0.00

0.78

0.66

1.0

1.0

1.0

0.84

0.86

0.99

0.47

0.81

0.82

17

0.95

0.72

0.97

0.73

0.72

0.72

1.00

0.49

0.72

1.0

1.0

1.0

0.84

0.86

0.99

1.00

0.45

0.79

18

0.94

0.71

0.92

0.71

0.70

0.71

0.70

0.65

0.68

1.0

1.0

1.0

0.84

0.86

0.99

0.71

0.60

0.75

19

0.78

0.56

0.78

0.57

0.56

0.56

0.07

0.73

0.64

0.9

0.9

1.0

0.72

0.74

0.85

0.88

0.67

0.77

20

0.94

0.77

0.82

0.76

0.77

0.77

0.21

0.84

0.57

1.0

1.0

1.0

0.83

0.86

1.00

0.02

0.87

0.62

21

1.00

0.68

1.00

0.69

0.67

0.67

0.72

0.96

0.81

1.0

1.0

1.0

0.84

0.86

0.99

0.00

0.81

0.82

22

0.96

0.81

0.94

0.81

0.80

0.80

0.00

0.71

0.84

1.0

1.0

1.0

0.85

0.86

0.99

0.27

0.66

0.90

23

1.00

0.70

1.00

0.71

0.70

0.70

0.00

0.67

0.87

0.9

0.8

1.0

0.71

0.72

0.83

0.00

0.61

0.92

24

0.96

0.71

0.96

0.72

0.70

0.70

0.00

0.92

0.77

1.0

0.9

1.0

0.78

0.79

0.91

0.00

0.81

0.82

25

0.99

0.71

0.99

0.72

0.70

0.70

0.67

0.98

0.75

1.0

0.9

1.0

0.80

0.81

0.93

0.29

0.81

0.82

26

0.96

0.61

1.00

0.61

0.60

0.61

0.10

0.96

0.81

1.0

1.0

1.0

0.81

0.84

0.97

0.55

0.81

0.82

27

0.90

0.51

1.00

0.51

0.50

0.50

0.00

0.95

0.81

1.0

1.0

1.0

0.84

0.86

0.99

0.00

0.81

0.82

28

0.96

0.85

0.80

0.85

0.84

0.84

0.00

0.77

0.65

1.0

1.0

1.0

0.85

0.86

0.99

0.00

0.81

0.82

29

1.00

0.70

0.91

0.72

0.69

0.69

0.00

0.94

0.63

1.0

1.0

1.0

0.85

0.85

0.98

0.24

0.87

0.68

30

1.00

0.71

0.87

0.73

0.70

0.70

0.07

0.85

0.69

1.0

1.0

1.0

0.85

0.86

0.99

0.06

0.84

0.76

31

1.00

0.29

0.95

0.32

0.27

0.28

0.57

0.91

0.77

1.0

1.0

1.0

0.85

0.86

0.99

0.59

0.81

0.82

32

1.00

0.70

0.86

0.70

0.69

0.69

0.14

0.86

0.63

1.0

0.9

1.0

0.79

0.80

0.93

0.72

0.87

0.69

33

1.00

0.65

0.93

0.65

0.64

0.64

0.01

0.89

0.75

1.0

0.9

1.0

0.79

0.81

0.93

0.00

0.81

0.82

34

0.99

0.62

0.90

0.64

0.61

0.61

0.13

0.79

0.76

1.0

1.0

1.0

0.85

0.86

0.99

0.37

0.72

0.86

35

1.00

1.00

0.64

1.00

0.99

1.00

0.02

0.68

0.40

1.0

1.0

1.0

0.85

0.85

0.99

0.21

1.00

0.44

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoubizadeh Vanini, M., Yousefi Zenouz, R., Abtahi, AR. et al. A study into the sustainability efficiency of supply chain network based on economic, social, and environmental trade-offs. Sādhanā 47, 156 (2022). https://doi.org/10.1007/s12046-022-01927-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01927-x

Keywords

Navigation