Skip to main content
Log in

A novel methodology to update table in air data system of a high performance fighter aircraft

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Accurate air data parameters and measurements are critical for the successful flight missions of any modern fighters. Externally mounted vanes and probes measure the local flow angles, pressure, and temperature. These local measurements are to be corrected through a calibration process to obtain the free stream flow angles, pressure, and ambient temperature, etc. The preflight calibration of these sensors are carried out using wind tunnel tests/CFD computations. This paper presents a novel methodology to update air data table of these sensors, post-flight. The Air Data Computer (ADC) of the aircraft discussed in this paper hosts air data tables that are pre-calibrated using the Maximum Likelihood Estimation (MLE) method. However, challenges have been experienced in extending MLE methods for unsteady flights, when dynamic effects prevail. Unsteady conditions during wind up turns are inevitable to perform calibration at High Angles of Attack (AoA) regimes. Hence, an extended Kalman filter based methodology is proposed for calibration and table update. A complete process is tested for an entire flight envelope having 200 and odd flights. The results demonstrate the strength of the technique for air data calibration and table update in ADC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

Abbreviations

u, v, w :

Velocities in the body frame

u wi, v wi, w wi :

Wind velocities in the inertial frame

N xb, N yb, N zb :

Accelerometer bias

p b, q b, r b :

Gyro bias

p q r :

Rates

N x, Ny, N z :

Accelerations

\(P_{s - true}^{L}\) :

Freestream Static pressure

\(P_{s - meas}^{L}\) :

Local Static pressure

\(P_{t - meas}^{L}\) :

Local Total pressure

\(\alpha_{ADS}^{SP}\) :

Side probe alpha from ADC

\(\alpha_{ADS}^{NP}\) :

Nose probe alpha from ADC

\(\beta_{ADS}^{SP}\) :

Side probe beta from ADC

\(\beta_{ADS}^{NP}\) :

Nose probe beta from ADC

M ADS :

Mach from ADC

Z ADS :

Pressure altitude from ADC

P tADS :

Total pressure from ADC

v :

Velocity in the Earth coordinate

Φ:

Euler angles

ϕ:

Bank angle

θ:

Pitch angle

ψ:

Yaw angle

h:

Altitude

P s :

Static pressure

P T :

Total pressure

G :

Gravity vector

M In2AC :

Transformation Matrix

W:

Wind vector in the inertial frame

α:

Angle of attack/Alpha

β:

Sideslip angle/Beta

TAS:

True Air Speed

IAS:

Indicated Air Speed

ADC:

Air Data Computer

MLE:

Maximum Likelihood Estimation

TAT:

Total Air Temperature

ADS:

Air Data System

AoA:

Angle of Attack/Alpha

AoSS:

Angle of Sideslip/Beta

References

  1. Haering E A 1995 Airdata Measurement and Calibration. NASA TM-104316

  2. Lawford J A and Nippress K R 1983 Calibration of Air Data systems and flow direction sensors. AGARD AG-300 Flight Test Techniques Series, NATO Science and Technology Organization, Vol. 1

  3. Haering E A Jr 1990 Airdata calibration of a High Performance aircraft for measuring atmospheric wind profiles. NASA Technical Memorandum 101714

  4. Etkin B 1972 Dynamics of Atmospheric Flight. John Wiley and Sons, New York

    Google Scholar 

  5. Mulder J A 1975 Estimation of the aircraft state in non-steady flight. AGARD CP-172, pp 19 . 1-19.21

  6. Schettini F, Di Rito G and Denti E 2018 Aircraft flow angles calibration via observed-based wind estimation. Aircraft Eng. Aerospace Technol. https://doi.org/10.1108/AEAT-06-2017-0145

    Article  Google Scholar 

  7. Schettini F and G Di Rito 2017 Novel Approach for Angles Calibration of Air-Data Systems with Inertial Measurements. J. Aircraft 54(5), pp 1640–1648

  8. Marco Lando, Manuela Battipede and Piero A Gili 2007 Neuro-Fuzzy Techniques for the Air-Data Sensor Calibration. J. Aircraft 44(3), pp 945–953

  9. Bach and Wingrove R C 1985 Applications of state estimation in aircraft flight-data analysis. AIAA J. Aircraft 22(7): 547–554

  10. R J Evans, G C Goodwin, R A Feik, C Martin and R Lozano-Leal 1985 Aircraft flight data compatibility checking using maximum likelihood and extended kalman filter estimation. IFAC Identification and system parameter estimation, York, U.K

  11. Klein V and Morgan D R Estimation of bias errors in measured airplane responses using maximum likelihood method. NASA TM -89059

  12. Feik R A 1982 A maximum likelihood program for non-linear system identification with application to aircraft flight data compatibility checking. ARL-AERO-NOTE-4ll

  13. Klein V and J R Schiess 1977 Compatibility check of measured aircraft responses using kinematic equations and extended Kalman filter. NASA TM D-8514

  14. Jonkers H L 1976 Application of the Kalman filter to flightpath reconstruction from flight test data including estimation of instrumental bias error corrections. PhD thesis, delft Tech. univ., the Netherlands

  15. Stalford H L and Hamachandran S 1978 Application of the Estimation-Before-Modeling (EBM) System Identification Method to the High Angle of Attack/Sideslip Flight of T-2C Jet Trainer. J Aircraft. Vol. II, NADC-76097-30

  16. Keskar D A and Klein V 1980 Determination of Instrumentation Errors from Measured Data Using Maximum Likelihood Method. AIAA Paper 80-1602, Danvers, MA

  17. Robert J Niewoehner 2006 Refi ning Satellite Methods for Pitot-Static Calibration. Journal of Aircraft, 43(3), pp 846–849

  18. Juan D Jurado and Clark C McGehee 2019 Complete online algorithm for air data system calibration. J. Aircraft 56(2), pp 517–528

  19. Parameswaran V, Jategaonkar R V and Press M 2002 Calibration of five-hole probe for flow angles from dynamic and tower fly-by maneuvers. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, California

  20. Martos B, Kiszley P and Foster J V 2011 Flight Test Results of a GPS-Based Pitot-Static Calibration Method Using Output-Error Optimization for a Light Twin-Engine Airplane. AIAA Paper 20116669

  21. Stephen A whitmore, Terry J Larson and Ehernberger I J 1984 Air data position error calibration using state reconstruction techniques. NASA TM 86029

  22. Foster J V and Cunningham K 2010 A GPS-Based Pitot-Static calibration method using global Output-Error optimization. In: AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, AIAA, Reston, VA, pp. 1-16

  23. Krishna H S and Singh K P 2002 Computation curves for air data system. Defence Sci. J. 52(1): 65–71. https://doi.org/10.14429/dsj.52.2150

    Article  Google Scholar 

  24. Singh K P 2014 Pre-flight calibration of air data sensors of a fighter aircraft. DRDO monographs/special publications series”

  25. Cooper W A, Spuler S M, Spowart M, Lenschow D H and Friesen R B 2014 Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor. Atmos. Meas. Tech. 7: 3215–3231. https://doi.org/10.5194/amt-7-3215

    Article  Google Scholar 

  26. Milne G, Martos B and Foster J V 2012 Flight Test Results of Efficient Maneuver Development for a GPS-Based Pitot-Static Calibration Method Using Output-Error Optimization. AIAA Paper 2012-2855

  27. Brian R Taylor 2012 A Full-Envelope Air Data Calibration and Three-Dimensional Wind Estimation Method Using Global Output-Error Optimization and Flight-Test Techniques. In: AIAA Atmospheric Flight Mechanics Conference, No. 2012-4410, Minneapolis

  28. Marie Michèle Siu, Borja Martos and John V Foster 2013 Flight Test Results of an Angle of Attack and Angle of Sideslip Calibration Method Using Output-Error Optimization. In: AIAA Atmospheric Flight Mechanics Conference, Boston doi: https://doi.org/10.2514/6.2013-5086

  29. Saraf Amitabh and Kumaresan G 2010 Flight calibration of flow angularity sensors on tejas using advanced parameter estimation techniques. Int. J. Aerospace Innovat. 2: 57–67

    Article  Google Scholar 

  30. Am Cho, Young shin Kang, Bum jin Park, Chang-sun Yoo and Sam Ok Koo 2012 Air data System Calibration Using GPS Velocity information. In: International Conference on Control, Automation and Systems, Jeju Island – Korea

  31. Am Cho, Young shin Kang, Bum jin Park, and Chang sun Yoo 2013 Airflow Angle and Wind Estimation Using GPS/INS Navigation Data and Airspeed. In: International Conference on Control, Automation and Systems, Gwangju, Korea

  32. Kamali C, Jain Shikha, Saraf Amitabh and Goyal Anup 2016 Calibration of static pressure sensors using extended kalman filter at high angles of attack and transonic mach numbers. IEEE Indian Control Conference. https://doi.org/10.1109/INDIANCC.2016.7441170,IIT-Hyderabad

    Article  Google Scholar 

  33. Kamali C, Shikha Jain, and Amitabh Saraf 2016 Novel method for static pressure calibration using Unscented Kalman Filter. ACODS, Elsevier - IFAC, Volume 49, Issue 1, 2016, Pages 646-651, NIT- Trichy

  34. Jain Shikha, Kamali C, Yarlagadda Yamini, Saraf Amitabh and Goyal Anup 2017 Calibration and accuracy determination of airdata system for a modern fighter. AIAA Atmosph. Flight Mech. Confer. https://doi.org/10.2514/6.2017-1868,Texas

    Article  Google Scholar 

  35. Kamali C, Jain Shikha, Yarlagadda Yamini and Saraf Amitabh 2017 Airdata calibration using Error state filter. AIAA Atmosph. Flight Mech. Conference. https://doi.org/10.2514/6.2017-3895,Colorado

    Article  Google Scholar 

  36. Shikha Jain C, Kamali N Manikanta and Babu and Amitabh Saraf, 2018 Extended Kalman filter based Air data system (ADS) table update for fighter aircraft. IEEE - Indian control conference. https://doi.org/10.1109/INDIANCC.2018.8307954IIT-kanpur

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out under a sponsored project from Aeronautical Development Agency, Bangalore. The authors sincerely thank Mr. Jitendra J Jadhav, Director NAL and Dr. Girish Deodhare, Director ADA, for their encouragement during this work. In addition, the authors extend their thanks to Dr. Jatinder Singh, Head, FMCD, NAL and Dr. A A Pashilkar, Deputy Head, FMCD for their support.

Funding

Funding was provided by ADA (Grant No. D0-171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Jain.

Appendix 1

Appendix 1

1.1 Extended Kalman Filter (EKF) Principle

Considering a generalized n-dimensional nonlinear model of the system, the state vector \({\mathbf{x}} \in {\mathbb{R}}^{n}\) is evolved according to the following discrete-time system model:

$$ {\mathbf{x}}_{k} = {\mathbf{f}}({\mathbf{x}}_{k - 1} ,{\mathbf{u}}_{k} ) + {\mathbf{w}}_{k} , \, $$

where \({\mathbf{w}} \in {\mathbb{R}}^{n}\) is a Gaussian process noise vector with covariance matrix \({\mathbf{Q}} \in {\mathbb{R}}^{n \times n}\).

These measurements are related to the state vector via the observation model as

$$ {\mathbf{z}}_{k} = {\mathbf{h}}({\mathbf{x}}_{k} ) + {\mathbf{v}}_{k} \, $$

where the measurement function \({\mathbf{h}}({\mathbf{x}})\) is a nonlinear function of the system state x and \({\mathbf{v}} \in {\mathbb{R}}^{r}\) represents associated Gaussian or non-Gaussian measurement noise vector with covariance matrix \({\mathbf{R}} \in {\mathbb{R}}^{r \times r}\).

The EKF is based on the analytical Taylor series expansion of the nonlinear systems and observation equations about the current estimated value and then, along with imperfect measurements EKF updates the estimates of the state vector and the covariance matrix. The update is accomplished through the Kalman gain matrix.

The governing equations of EKF are given by:

1.2 Time update step

Predicted state estimate

$$ {\mathbf{x}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} = {\mathbf{f}}({\mathbf{x}}_{{{{k - 1} \mathord{\left/ {\vphantom {{k - 1} {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} ,{\mathbf{u}}_{k} ) $$

Predicted covariance estimate:

$$ {\mathbf{P}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} {\mathbf{ = F}}_{k - 1} {\mathbf{P}}_{{{{k - 1} \mathord{\left/ {\vphantom {{k - 1} {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} {\mathbf{F}}_{k - 1}^{T} + {\mathbf{Q}}_{k - 1} $$

1.3 Measurement update step

Innovation covariance:

$$ {\mathbf{S}}_{k} {\mathbf{ = H}}_{k} {\mathbf{P}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} {\mathbf{H}}_{k}^{T} + {\mathbf{R}}_{k} $$

Near optimal Kalman gain:

$$ {\mathbf{K}}_{k} {\mathbf{ = P}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} {\mathbf{H}}_{k}^{T} {\mathbf{S}}_{k}^{ - 1} $$

Updated state estimate:

$$ {\mathbf{x}}_{{{k \mathord{\left/ {\vphantom {k k}} \right. \kern-\nulldelimiterspace} k}}} {\mathbf{ = x}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} + {\mathbf{K}}_{k} ({\mathbf{z}}_{k} - {\mathbf{h}}({\mathbf{x}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} )) $$

Updated covariance estimate:

$$ {\mathbf{P}}_{{{k \mathord{\left/ {\vphantom {k k}} \right. \kern-\nulldelimiterspace} k}}} {\mathbf{ = }}({\mathbf{I}} - {\mathbf{K}}_{k} {\mathbf{H}}_{k} ){\mathbf{P}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} $$

where the state transition and observation matrices are defined by the following Jacobians:

$$ \left. {{\mathbf{F}}_{k - 1} = \frac{{\partial {\mathbf{f}}}}{{\partial {\mathbf{x}}}}} \right|_{{{\mathbf{x}}_{{{{k - 1} \mathord{\left/ {\vphantom {{k - 1} {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} }} \;{\text{and}}\;\left. {{\mathbf{H}}_{k} = \frac{{\partial {\mathbf{h}}}}{{\partial {\mathbf{x}}}}} \right|_{{{\mathbf{x}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} }} $$

where \({\mathbf{f}}({\mathbf{x}}_{{{{k - 1} \mathord{\left/ {\vphantom {{k - 1} {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}} ,{\mathbf{u}}_{k} ) \, \) is nonlinear state transition functions. It describes the transition of state vector x from one time instant to another in response to a control input \({\mathbf{u}} \in {\mathbb{R}}^{p} \, \)

Time update step equations are used in the time update (prediction) process to propagate state and error covariance matrix further in time. Predicted values \({\mathbf{x}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}}\) and \({\mathbf{P}}_{{{k \mathord{\left/ {\vphantom {k {k - 1}}} \right. \kern-\nulldelimiterspace} {k - 1}}}}\) are then passed to the measurement update to calculate Kalman gain \({\mathbf{K}}_{k}\), corrected system state \({\mathbf{x}}_{{{k \mathord{\left/ {\vphantom {k k}} \right. \kern-\nulldelimiterspace} k}}}\) and error covariance \({\mathbf{P}}_{{{k \mathord{\left/ {\vphantom {k k}} \right. \kern-\nulldelimiterspace} k}}}\) in measurement update step.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Kamali, C., Goyal, A. et al. A novel methodology to update table in air data system of a high performance fighter aircraft. Sādhanā 47, 39 (2022). https://doi.org/10.1007/s12046-022-01812-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01812-7

Keywords

Navigation