Skip to main content
Log in

Additive manufacturing of ceramics and cermets: present status and future perspectives

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The present decade has witnessed a huge volume of research revolving around a number of Additive Manufacturing (AM) techniques, especially for the fabrication of different metallic materials. However, fabrication of ceramics and cermets using AM-based techniques mainly suffers from two primary limitations which are: (i) low density and (ii) poor mechanical properties of the final components. Although there has been a considerable volume of work on AM based techniques for manufacturing ceramic and cermet parts with enhanced densities and improved mechanical properties, however, there is limited understanding on the correlation of microstructure of AM-based ceramic and cermet components with the mechanical properties. The present article is aimed to review some of the most commonly used AM techniques for the fabrication of ceramics and cermets. This has been followed by a brief discussion on the microstructural developments during different AM-based techniques. In addition, an overview of the challenges and future perspectives, mainly associated with the necessity towards developing a systematic structure-property correlation in these materials has been provided based on three factors viz. the efficiency of different AM-based fabrication techniques (involved in ceramic and cermet research), an interdisciplinary research combining ceramic research with microstructural engineering and commercialisation of different AM techniques based on the authors’ viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  1. Conrad H J, Seong W J and Pesun I J 2007 Current ceramic materials and systems with clinical recommendations: a systematic review. J. Prosthet. Dent. 98: 389–404

    Article  Google Scholar 

  2. Blatz M B, Sadan A and Kern M 2003 Resin-ceramic bonding: a review of the literature. J. Prosthet. Dent. 89: 268–274

    Article  Google Scholar 

  3. Kingery W D 1955 Factors affecting thermal stress resistance of ceramic materials. J. Am. Ceram. Soc. 38: 3–15

    Article  Google Scholar 

  4. Cao X Q, Vassen R and Stoever D 2004 Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24: 1–10

    Article  Google Scholar 

  5. De Aza A H, Chevalier J, Fantozzi G, Schehl M and Torrecillas R 2002 Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials. 23: 937–945

    Article  Google Scholar 

  6. Akhtar F, Rehman Y and Bergström L 2010 A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength. Powder Technol. 201: 253–257

    Article  Google Scholar 

  7. Wu J M, Lu W Z, Lei W, He J P and Wang J 2011 Effects of aqueous gel-casting and dry pressing on the sinterability and microwave dielectric properties of ZnAl2O4-based ceramics. Ceramics Int. 37: 481–486

    Article  Google Scholar 

  8. Wu J M, Lu W Z, Wang X H, Fu P, Ni M, Yang J L, Wang C and Zeng Q C 2013 Ba0.6Sr0.4TiO3-MgO ceramics from ceramic powders prepared by improved aqueous gel casting-assisted solid-state method. J. Eur. Ceram. Soc. 33: 2519–2527

    Article  Google Scholar 

  9. Chen A N, Wu J M, Liu M Y, Cheng L J, Chen J Y, Xiao H, Zhang X Y, Li C H and Shi Y S 2017 Rapid in-situ solidification of SiO2 suspension by direct coagulation casting via controlled release of high valence counter ions from calcium iodate and pH shift. Ceram. Int. 43: 1930–1936

    Article  Google Scholar 

  10. Sebastian M T, Ubic R and Jantunen H 2015 Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60: 392–412

    Article  Google Scholar 

  11. Zhang X and Zhao L D 2015 Thermoelectric materials: energy conversion between heat and electricity. J. Materiomic. 1: 92–105

    Article  Google Scholar 

  12. Simonenko E P, Sevast’yanov D V, Simonenko N P, Sevast’yanov V G and Kuznetsov N T 2013 Promising ultra-high-temperature ceramic materials for aerospace applications. Russ. J. Inorg. Chem. 58: 1669–1693

    Article  Google Scholar 

  13. Baklouti S, Bouaziz J, Chartier T and Baumard J F 2001 Binder burnout and evolution of the mechanical strength of dry- pressed ceramics containing poly(vinyl alcohol). J. Eur. Ceram. Soc. 21: 1087–1092

    Article  Google Scholar 

  14. Trunec M, Klimke J and Shen Z J 2016 Transparent alumina ceramics densified by a combinational approach of spark plasma sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 36: 4333–4337

    Article  Google Scholar 

  15. Jabbari M, Bulatova R and Tok A I Y, Bahl C R H, Mitsoulis E, Hattel J H 2016 Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis. Mater. Sci. Eng. B. 212: 39–61

    Article  Google Scholar 

  16. Beaman J J and Deckard C R 1990 Selective laser sintering with assisted powder handling. United States patent 4(938): 816

    Google Scholar 

  17. Wu Y, Du J, Choy K L and Hench L L 2007 Laser densification of alumina powder beds generated using aerosol assisted spray deposition. J. Eur. Ceram. Soc. 27: 4727–4735

    Article  Google Scholar 

  18. Wu Y, Du J, Choy K L and Hench L L 2007 Fabrication of titanium dioxide ceramics by laser sintering green layers prepared via aerosol assisted spray deposition. Mater. Sci. Eng. A. 454–455: 148–155

    Article  Google Scholar 

  19. Zhu W, Yan C, Shi Y, Wen S, Liu J and Shi Y 2015 Investigation into mechanical and microstructural properties of polypropylene manufactured by selective laser sintering in comparison with injection molding counterparts. Mater. Des. 82: 37–45

    Article  Google Scholar 

  20. Ma A, Roters F and Raabe D 2006 Studying the effect of grain boundaries in dislocation density based crystal plasticity finite element simulations. Int. J. Solids Struct. 43: 7287–7303

    Article  MATH  Google Scholar 

  21. ISO/ASTM, 17296 standard on Additive Manufacturing (AM) Technologies

  22. Deckers J, Vleugels J and Kruth J P 2004 Additive Manufacturing of Ceramics: A Review. J. Ceram. Sci. Tech., pp. 1-51

  23. Kruth J P, Levy G, Klocke F and Childs T H C 2007 Consolidation phenomena in laser and powder-bed based layered manufacturing. Annals of the CIRP. 56: 730–759

    Article  Google Scholar 

  24. Mahale T H 2009 Electron Beam Melting of advanced materials and structures. PhD thesis, North Carolina State University

  25. Raabe D, Ponge D, Dmitrieva O and Sander B 2009 Nano-precipitate hardened 1.5 GPa steels with unexpected high ductility. Scr. Mater. 60: 1141–1144

    Article  Google Scholar 

  26. Herbig M, Raabe D, Li Y J, Choi P, Zaefferer S and Goto S 2014 Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112: 126103

    Article  Google Scholar 

  27. Lejcek P 2010 Grain boundary segregation in metals. Springer Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  28. Felfer P J, Alam T, Ringer S P and Cairney J M 2012 A reproducible method for damage- free site-specific preparation of atom probe tips from interfaces. Microsc. Res. Techniq. 75: 484–491

    Article  Google Scholar 

  29. Toji Y, Matsuda H, Herbig M, Choi P P and Raabe D 2014 Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Mater. 65: 215–228

    Article  Google Scholar 

  30. Gault B, Moody M P, Cairney J M and Ringer S P 2012 Atom probe crystallography. Mater. Today. 15: 378–386

    Article  Google Scholar 

  31. Williams C B 2008 Design and development of a layer-based Additive Manufacturing process for the realization of metal parts of designed mesostructured. PhD thesis, Georgia Institute of Technology

  32. Sirringhaus H and Shimoda T 2003 Inkjet Printing of functional materials. Mater. Res. Soc. Bull. Inkjet Print. Func. Mater. 28: 802–806

    Article  Google Scholar 

  33. Ebert J, Özkol E, Zeichner A, Uibel K, Weiss Ö, Koops U, Telle R and Fischer H 2009 Direct Inkjet Printing of dental prostheses made of zirconia. J. Dent. Res. 88: 673–676

    Article  Google Scholar 

  34. Özkol E, Wätjen M, Bermejo R, Deluca M, Ebert J, Danzer R and Telle R 2010 Mechanical characterisation of miniaturised direct inkjet printed 3Y-TZP specimens for microelectronic applications. J. Eur. Ceram. Soc. 30: 3145–3152

    Article  Google Scholar 

  35. Hon K K B, Li L and Hutchings I M 2008 Direct writing technology - advantages and developments. CIRP Ann. Manuf. Technol. 57: 601–620

    Article  Google Scholar 

  36. Sukeshini M, Meisenkothen F, Gardner P and Reitz T L 2013 Aerosol Jet Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage Scanning Electron Microscopy. J. Power Sourc. 224: 295–303

    Article  Google Scholar 

  37. Grida I and Evans J R G 2003 Extrusion freeforming of ceramics through fine nozzles. J. Eur. Ceram. Soc. 23: 629–635

    Article  Google Scholar 

  38. Yardimci M A and Güçeri S 1996 Conceptual framework for the thermal process modelling of fused deposition. Rapid Prototyp. J. 2: 26–31

    Article  Google Scholar 

  39. Venkataraman N, Rangarajan S, Matthewson M J, Harper B, Safari A, Danforth S C, Wu G, Langrana N, Guceri S and Yardimci A 2000 Feedstock material property—process relationships in Fused Deposition of Ceramics (FDC). Rapid Prototyp. J. 6: 244–253

    Article  Google Scholar 

  40. Miranda P, Siaz E, Gryn K and Tomsia A P 2006 Sintering and Robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomaterialia 2: 457–466

    Article  Google Scholar 

  41. Bocanegra-Bernal M H and Matovic B 2009 Dense and near-net-shape fabrication of Si3N4 ceramics. Mater. Sci. Eng. A. 500: 130–149

    Article  Google Scholar 

  42. Cai K, Roman-Manso B, Smay J E, Zhou J, Osendi M I, Belmonte M and Miranzo P 2012 Geometrically complex silicon carbide structures fabricated by Robocasting. J. Am. Ceram. Soc. 95: 2660–2666

    Article  Google Scholar 

  43. de Hazan Y, Thänert M, Trunec M and Misak J 2012 Robotic deposition of 3D nanocomposite and ceramic fiber architectures via UV curable colloidal inks. J. Eur. Ceram. Soc. 32: 1187–1198

    Article  Google Scholar 

  44. Li J P, Habibovic P, van den Doel M, Wilson C E, de Wijn J R, van Blitterswijk C A and de Groot K 2007 Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials. 28: 2810–2820

    Article  Google Scholar 

  45. King B H, Dimos D, Yang P and Morissette S L 1999 Direct-write fabrication of integrated, multilayer ceramic components. J Electroceram. 3: 173–178

    Article  Google Scholar 

  46. Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, Schlordt T and Greil P 2014 Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16: 729–754

    Article  Google Scholar 

  47. Leu M C, Pattnaik S and Hilmas G E 2012 Investigation of Laser Sintering for freeform fabrication of zirconium diboride parts. J Virtual Phys. Prototyp. 7: 25–36

    Article  Google Scholar 

  48. Huang T, Mason M S, Hilmas G E and Leu M C 2006 Freeze-form extrusion fabrication of ceramic parts. Int. J. Virtual Phys. Prototyp. 1: 93–100

    Article  Google Scholar 

  49. McMillen D, Li W, Leu M C, Hilmas G E and Watt J 2016 designed extrudate for additive manufacturing of zirconium diboride by ceramic on-demand extrusion. Solid Freeform Fabrication. In: Proceedings of the 26th Annual International Solid Freeform Fabrication SymposiumAn Additive Manufacturing Conference

  50. Feilden E, Glymond D, Saiz E and Vandeperre L 2019 High temperature strength of an ultra high temperature ceramic produced by additive manufacturing. Ceramics Int. 45: 18210–18214

    Article  Google Scholar 

  51. Balla V K, Bose S and Bandyopadhyay A 2008 Processing of bulk alumina ceramics using Laser Engineered Net Shaping. Int. J. Appl. Ceram. Technol. 5: 234–242

    Article  Google Scholar 

  52. Wang F, Mei J, Jiang H and Wu X 2007 Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed. Mater. Sci. Eng. A. 445: 461–466

    Article  Google Scholar 

  53. Chen A N, Wu J M, Liu K, Chen J Y, Xiao H, Chen P, Li C H and Shi Y S 2017 High-performance ceramic parts with complex shape prepared by selective laser sintering: a review. Adv. Appl.Ceram. 117: 100–117

    Article  Google Scholar 

  54. Dierkes S, Faber A J, Wilkes J, Welters M P M, Meiners W and Wissembach K 2011 International patent WO2011/018463A1. Ceramic or glass- ceramic article and methods for producing such article

  55. Lakiza S M and Lopato L M 1997 Stable and metastable phase relations in the system Alumina–Zirconia–Yttria. J. Am. Ceram. Soc. 80: 893–902

    Article  Google Scholar 

  56. Tang H H 2002 Direct Laser Fusion to form ceramic parts. Rapid Prototyp. J. 8: 284–289

    Article  Google Scholar 

  57. Tang H H Yen H C and Lin W H 2003 On ceramic parts fabricated Rapid Prototyping machine based on Ceramic Laser Fusion, SFF Symposium, Texas

  58. Tang H H, Yen H C, Su S M and Lin Z Y 2004 Prospect of making ceramic shell mold by ceramic laser fusion. SFF Symposium, Texas

  59. Yen H C and Tang H H 2012 Study on direct fabrication of ceramic shell mold with slurry-based Ceramic Laser Fusion and Ceramic Laser Sintering. Int. J. Adv. Manuf. Technol. 60: 1009–1015

    Article  Google Scholar 

  60. Deckard C R, Beaman J J and Darrah J F 1992 Method of producing parts. Patent WO1992008567A1

  61. Lakshminarayan U, Ogrydiziak S, and Marcus HL 1990 Selective Laser Sintering of ceramic materials. SFF Symposium. Texas

  62. Lakshminarayan U and Marcus H L 1991 Microstructural and mechanical properties of Al2O3/P2O3 and Al2O3/B2O3 composites fabricated by selective laser sintering. SFF Symposium. Texas

  63. Bertrand P, Bayle F, Combe C, Goeuriot P and Smurov I 2007 Ceramic components manufacturing by Selective Laser Sintering. App. Surf. Sci. 254: 989–992

    Article  Google Scholar 

  64. Gahler A and Heinrich J G 2006 Direct Laser Sintering of Al2O3-SiO2 dental ceramic components by layer-wise slurry deposition. J. Am. Ceram. Soc. 89: 3076–3080

    Article  Google Scholar 

  65. Bergstörm L 2001 Colloidal processing of ceramics. In: Handbook of Applied Surface and Colloid Chemistry. (ed. K. Holmberg). Wiley, New York

  66. Deckers J, Shahzad K, Vleugels J and Kruth J 2012 Isostatic pressing assisted indirect selective laser sintering of alumina components. Rapid Prototyp. J. 18: 409–419

    Article  Google Scholar 

  67. Heinrich J G 2009 LSD-based Selective Laser Sintering. CFI. Ceramic Forum International/Berichte der DKG (Deutsche Keramische Gesellschaft) 86: E129–E130

    Google Scholar 

  68. Tian X, Günster J, Melcher J, Li D and Heinrich J G 2009 Process parameters analysis of direct Laser Sintering and post treatment of porcelain components using Taguchi’s method. J. Eur. Ceram. Soc. 29: 1903–1915

    Article  Google Scholar 

  69. Tian X, Li D and Heinrich J G 2012 Rapid Prototyping of porcelain products by Layer-wise Slurry Deposition (LSD) and direct Laser Sintering. Rapid Prototyp. J. 18: 362–373

    Article  Google Scholar 

  70. Tian X, Sun B, Heinrich J G and Li D 2010 Stress relief mechanism in layer-wise laser directly sintered porcelain ceramics. Mater. Sci. Eng. A. 527: 1695–1703

    Article  Google Scholar 

  71. Heinrich J G, Gahler A, Günster J, Schmücker M, Zhang J, Jiang D and Ruan M 2007 Microstructural evolution during direct Laser Sintering in the Al2O3-SiO2 system. J. Mater. Sci. 42: 5307–5311

    Article  Google Scholar 

  72. Klocke F, Derichs C, Ader C and Demmer A 2007 Investigations on Laser Sintering of ceramic slurries. Prod. Eng. Res. Devel. 1: 279–284

    Article  Google Scholar 

  73. Regenfuss P, Streek A, Hartwig L, Klötzer S, Brabant T, Horn M, Ullmann F, Ebert R and Exner H 2007 Material depending mechanisms in Laser Micro Sintering. In: Proceedings of the 5th LANE conference, Erlangen, pp. 403-418

  74. Exner H, Regenfuss P, Ebert R, Hartwig L, Streek A, Klötzer S and Horn M 2006 Lasermikrosintern von keramischen Materialien. RTejournal - Forum für Rapid Technologie. 3: 1–18

    Google Scholar 

  75. Regenfuss P, Streek A, Hartwig L, Horn M, Klötzer S, Ebert R and Exner H 2008 Freeform fabrication of dental inlays by Laser Micro-Sintering. Laser User Magazine. 52: 36–38

    Google Scholar 

  76. Regenfuss P, Streek A, Ullmann F, Hartwig L, Horn M, Kühn C, Ebert R, and Exner H 2008 Laser Microsintering - reaction models and results. cfi/Berichte DKG. 85: 65-72

  77. Regenfuss P, Streek A, Ullmann F, Kühn C, Hartwig L, Horn M, Ebert R and Exner H 2008 Laser Micro Sintering of ceramic materials, part 2. Interceram. 57: 6–9

    Google Scholar 

  78. Deckers J, Meyers S, Wijremblewski B, Kruth J P and Vleugels J 2014 Direct selective laser sintering/melting of high density alumina powder layers at elevated temperatures', 8th International Conference on Photonic Technologies LANE. Fürth. Physics Procedia, pp. 117- 124

  79. Deckers J, Meyers S, Wijremblewski B, Vleugels J and Kruth J P 2014 Direct selective laser sintering/melting of fine grained alumina with a novel experimental setup. Materials Science and Technology: special issue on 3D printing

  80. Wijremblewski B 2013 Testing an experimental setup for the selective laser sintering of technical ceramics (Master thesis). PhD thesis. KU Leuven

  81. Vasiliauskaite E, Van Paepegem W, Deckers J P, Vermandel M, Forward M and Plasschaert F 2020 Additive manufacturing of ankle-foot Orthosis with predefined ankle stiffness—a case report. J. Prosthet. Orthot. 32: 310–318

    Article  Google Scholar 

  82. Faes M, Vleugels J, Vogeler F and Ferraris E 2016 Extrusion-based additive manufacturing of ZrO2 using photoinitiated polymerization. CIRP J. Manuf. Sci. Technol. 14: 28–34

    Article  Google Scholar 

  83. Bertrand P, Yadroitsev I and Smurov I 2004 Prototypage rapide et fabrication directe par laser d’objets multimatériaux multifonctionnels. Dixième assisses Europ. de Prototypage Rapide, Paris

    Google Scholar 

  84. Birmingham B R and Marcus H L 1995 Solid Freeform Fabrication of silicon nitride shapes by Selective Laser Reaction Sintering (SLRS). SFF Symposium. Texas

  85. Klocke F and Wirtz H 1997 Selective Laser Sintering of ceramics, In: Laser Assisted Net Shape Engineering (LANE) conference. Erlangen

  86. Tang HH 1993 Ceramic Laser Sintering - optimization of ceramic Rapid Prototyping Technical report of the National Taipei University of Technology in Taiwan

  87. Barlow J W and Vail N K, International patent WO 93/19019: Producing high-temperature parts by low-temperature sintering. 86

  88. Liu Z H, Nolte J J, Packard J I, Hilmas G, Dogan F and Leu M C 2007 Selective Laser Sintering of high density alumina ceramic parts, In: Proceedings of the 35th MATADOR conference, Taipei (Taiwan), pp. 351-354

  89. Regenfuss P, Streek A, Hartwig L, Klötzer S, Brabant T, Horn M, Ullmann F, Ebert R and Exner H 2007 Material depending mechanisms in Laser Micro Sintering, In: Proceedings of the 5th LANE conference, Erlangen, pp. 403-418

  90. Shishkovsky I, Yadroitsev I, Bertrand P and Smurov I 2007 Alumina- zirconium ceramics synthesis by Selective Laser Sintering/Melting. Appl. Surf. Sci. 254: 966–970

    Article  Google Scholar 

  91. Leu M C, Adamek EB, Huang T, Hilmas G E and Dogan F 2008 Freeform fabrication of zirconium diboride parts using selective laser sintering. SFF Symposium. Texas

  92. Leu M C, Pattnaik S and Hilmas G E 2010 Optimization of selective laser sintering process for fabrication of zirconium diboride parts. SFF Symposium, Texas

  93. Shahzad K 2013 Powder-based indirect selective laser sintering of ceramics (Doctoral thesis), PhD thesis, KU Leuven

  94. Deckers J 2013 Selective Laser Sintering and Melting as Additive Manufacturing Methods to Produce Alumina Parts; '3D printing' of Ceramics (Doctoral thesis)', PhD thesis, KU Leuven, 2013

  95. Cardon L, Deckers J, Verberckmoes A, Ragaert K, Delva L, Shahzad K, Vleugels J and Kruth J 2013 Polystyrene-coated alumina powder via dispersion polymerization for indirect selective laser sintering applications. J. Appl. Polym. Sci. 128: 2121–2128

    Google Scholar 

  96. Gill T J and Hon K K B 2004 Experimental investigations into the selective laser sintering of silicon carbide polyamide composites. Proc. IMechE Part B J. Eng. Manuf. 218: 1249–1256

    Article  Google Scholar 

  97. Stucker B E, Bradley W L, Norasetthekul S and Eubank P T 1995 The Production of Electrical Discharge Machining Electrodes Using SLS: Preliminary Results, In: Proceedings of Solid Freeform Fabrication Symposium, Austin, Texas, pp. 278-286

  98. Stucker B E, Bradley W L, Eubank P T, Norasetthekul S and Bedri B 1997 Zirconium Diboride/Copper EDM Electrodes From Selective Laser Sintering, In: Proceedings of Solid Freeform Fabrication Symposium, Austin. Texas, pp. 257-265

  99. Sun C N and Gupta M C 2008 Laser Sintering of ZrB2. J. Am. Ceramic Soc. 91: 1729–1731

    Article  Google Scholar 

  100. Evans R S, Bourell D L, Beaman J J and Campbell M I 2005 Rapid manufacturing of silicon carbide composites. Rapid Prototyp. J. 11: 37–40

    Article  Google Scholar 

  101. Yen H C, Tang H H and Wu C H 2011 Improving staircase effect in the process of Ceramic Laser Gelling. Adv. Mater. Res. 284–286: 43–47

    Article  Google Scholar 

  102. Liu F H and Liao Y S 2010 Fabrication of inner complex ceramic parts by Selective Laser Gelling. J. Eur. Ceram. Soc. 30: 3283–3289

    Article  Google Scholar 

  103. Liu F H 2011 Manufacturing porous multi-channel ceramic by Laser Gelling. Ceram. Int 37: 2789–2794

    Article  Google Scholar 

  104. Griffith M L and Halloran J W 1996 Freeform Fabrication of Ceramics via Stereolithography. J. Am. Ceram. Soc. 79: 2601–2608

    Article  Google Scholar 

  105. Halloran J W, Tomeckova V, Gentry S, Das S, Cilino P, Yuan D, Guo R, Rudraraju A, Shao P, Wu T, Alabi T R, Baker W, Legdzina D, Wolski D, Zimbeck W R and Long D 2011 Photopolymerization of powder suspensions for shaping ceramics. J. Eur. Ceram. Soc. 31: 2613–2619

    Article  Google Scholar 

  106. Wang J C 2013 A novel fabrication method of high strength alumina ceramic parts based on solvent-based slurry stereolithography and sintering. Int. J. Precis. Eng. Manuf. 14: 485–491

    Article  Google Scholar 

  107. de Hazan Y, Heinecke J, Weber A and Graule T 2009 High solids loading ceramic colloidal dispersions in UV curable media via comb- polyelectrolyte surfactants. J. Colloid Interface Sci. 337: 66–74

    Article  Google Scholar 

  108. Jacobs P F 1992 Rapid prototyping & manufacturing - fundamentals of stereolithography. Society of Manufacturing Engineers, pp. 29-33

  109. Liu X, Zou B, Xing H and Huang C 2020 The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceram. Int. 46: 937–944

    Article  Google Scholar 

  110. Bertsch A, Jiguet S and Renaud P 2004 Microfabrication of ceramic components by microstereolithography. J. Micromech. Microeng. 14: 197–203

    Article  Google Scholar 

  111. Nold A, Zeiner J, Assion T and Clasen R 2010 Electrophoretic deposition as Rapid Prototyping method. J. Eur. Ceram. Soc. 30: 1163–1170

    Article  Google Scholar 

  112. Aramiana A, Razavi S M J, Sadeghiana Z and Bertob F 2020 A review of additive manufacturing of cermets. Addit. Manuf. 33: 1–17

    Google Scholar 

  113. Uhlmann E, Bergmann A and Gridin W 2015 Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting. Procedia Cirp. 35: 8–15

    Article  Google Scholar 

  114. Simchi A 2006 Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater. Sci. Eng. A. 428: 148–158

    Article  Google Scholar 

  115. Xiong Y, Smugeresky J E, Lavernia E and Schoenung J M 2008 Processing and micro- structure of WC-CO cermets by laser engineered net shaping. In: 19th Annu. Int. Solid Free. Fabr. Symp. SFF

  116. Enneti R K and Prough K C 2019 Wear properties of sintered WC-12%Co processed via Binder Jet 3D Printing (BJ3DP). Int. J. Refract. Met. Hard Mater. 78: 228–232

    Article  Google Scholar 

  117. Lengauer W, Duretek I, Fürst M, Schwarz V, Gonzalez-Gutierrez J, Schuschnigg S, Kukla C, Kitzmantel M, Neubauer E, Lieberwirth C and Morrison V 2019 Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. Int. J. Refract. Met. Hard Mater. 82: 141–149

    Article  Google Scholar 

  118. Zhang X, Guo Z, Chen C and Yang W 2018 Additive manufacturing of WC-20Co compo- nents by 3D gel-printing. Int. J. Refract. Met. Hard Mater. 70: 215–223

    Article  Google Scholar 

  119. Krakhmalev P and Yadroitsev I 2014 Microstructure and properties of intermetallic com- posite coatings fabricated by selective laser melting of Ti-SiC powder mixtures. Intermetallics. 46: 147–155

    Article  Google Scholar 

  120. Khmyrov R S, Safronov V A and Gusarov A V 2017 Synthesis of nanostructured WC-Co hardmetal by selective laser melting. Procedia IUTAM. 23: 114–119

    Article  Google Scholar 

  121. Khmyrov R S, Shevchukov A P, Gusarov A V and Tarasova T V 2017 Phase composition and microstructure of WC-Co alloys obtained by selective laser melting, Mech. Ind. 18

  122. Grigoriev S, Tarasova T, Gusarov A, Khmyrov R and Egorov S 2019 Possibilities of manufacturing products from cermet compositions using nanoscale powders by additive manufacturing methods. Materials (Basel). 12

  123. Campanelli S L, Contuzzi N, Posa P and Angelastro A 2019 Printability and microstructure of selective laser melting of WC/Co/Cr powder, Materials (Basel). 12

  124. Domashenkov A, Borbély A and Smurov I 2016 Structural modifications of WC/Co nano- phased and conventional powders processed by selective laser melting. Mater. Manuf. Process. 32: 93–100

    Article  Google Scholar 

  125. Gu D and Shen Y 2008 Direct laser sintered WC-10Co/Cu nanocomposites. Appl. Surf. Sci. 254: 3971–3978

    Article  Google Scholar 

  126. Kumar S 2018 Process chain development for additive manufacturing of cemented carbide. J. Manuf. Process. 34: 121–130

    Article  Google Scholar 

  127. Gu D and Meiners W 2010 Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hard metals prepared by Selective Laser Melting. Mater. Sci. Eng. A. 527: 7585–7592

    Article  Google Scholar 

  128. Gu D D, Shen Y F, Dai P and Yang M C 2006 Microstructure and property of sub-micro WC-10%Co particulate reinforced Cu matrix composites prepared by selective laser sintering. Trans. Nonferrous Met. Soc. China (English Ed.) 16: 357–362

    Article  Google Scholar 

  129. Xiong Y, Smugeresky J E, Ajdelsztajn L and Schoenung J M 2008 Processing and Microstructure of WC-Co cermets by laser engineering net shaping. Mater. Sci. Eng. A. 493: 261–266

    Article  Google Scholar 

  130. Sahasrabudhe H and Bandyopadhyay A 2016 Additive Manufacturing of reactive in situ Zr based ultra-high temperature ceramic composites. JOM. 68: 822–830

    Article  Google Scholar 

  131. Xiong Y, Smugeresky J E and Schoenung J M 2009 The influence of working distance on laser deposited WC-Co. J. Mater. Process. Technol. 209: 4935–4941

    Article  Google Scholar 

  132. Xiong Y, Kim M, Seo O, Schoenung J M and Kang S 2010 (Ti, W)C–Ni cermets by laser engineered net shaping. Powder Metall. 53: 41–46

    Article  Google Scholar 

  133. Li Y, Bai P, Wang Y, Hu J and Guo Z 2009 Effect of Ni contents on the microstructure and mechanical properties of TiC-Ni cermets obtained by direct laser fabrication. Int. J. Refract. Met. Hard Mater. 27: 552–555

    Article  Google Scholar 

  134. Prichard P D and Collins G B 2018 Cemented carbide powders for additive manufacturing, U.S. Patent Application 15

  135. Enneti R K and Prough K C 2019 Effect of binder saturation and powder layer thickness on the green strength of the binder jet 3D printing (BJ3DP) WC-12 % Co powders. Int. J. Refract. Metals Hard Mater. 84: 104991

  136. Flon J D 2019 Three dimensional printing of cermet or cemented carbide, U.S. Patent Application 16

  137. Reyes M and Neville A 2003 Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore. Wear. 255: 143–156

    Article  Google Scholar 

  138. Cramer C L, Aguirre TG, Wieber N R, Lowden R A, Trofimov A A, Wang H, Yan J, Paranthaman M P and Elliott A M 2019 Binder jet printed WC infiltrated with pre- made melt of WC and Co. Int. J. Refract. Met. Hard Mater. 105137

  139. Cramer C L, Nandwana P, Lowden R A and Elliott A M 2019 Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method. Addit. Manuf. 28: 333–343

    Google Scholar 

  140. Cramer C L, Wieber N R, Aguirre T G, Lowden R A and Elliott A M 2019 Shape retention and infiltration height in complex WC-Co parts made via binder jet of WC with subsequent Co melt infiltration, Addit. Manuf. 29. 100828

  141. Michael K, Walter L, Ivica D and Viktoria S 2018 Potential of extrusion based 3D-printed hardmetal and cermet parts. World Congr. Powder Metall

  142. Satish Prakash K, Nancharaih T and Subba Rao V V 2018 Additive manufacturing techniques in manufacturing—an overview. Mater. Today Proc. 5: 3873–3882

    Article  Google Scholar 

  143. Gao W et al. 2015 The status, challenges, and future of additive manufacturing in Engineering. Comput-Aided Des. 69: 65–89

    Article  Google Scholar 

  144. Zocca A, Colombo P, Gomes C M and Günster J 2015 Additive manufacturing of ceramics: issues, potentialities, and opportunities. J. Am. Ceram. Soc. 98: 1983–2001

    Article  Google Scholar 

  145. Tang Y, Henderson C L, Muzzy J and Rosen D W 2004 Stereolithography cure process modeling using acrylate resin. In: Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX

  146. Turner B N and Gold S A 2015 A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp. J. 21: 250–261

    Article  Google Scholar 

  147. Liu H, Su H, Shen Z, Wang E, Zhao D, Guo M, Zhang J, Liu L and Fu H 2018 Direct formation of Al2O3/GdAlO3/ZrO2 ternary eutectic ceramics by selective laser melting: Microstructure evolutions. J. Eur. Ceram. Soc. 38: 5144–5152

    Article  Google Scholar 

  148. Triantafyllidis D, Li L and Stott F H 2003 Mechanisms of porosity formation along the solid/liquid interface during laser melting of ceramics. Appl. Surf. Sci. 208–209: 458–462

    Article  Google Scholar 

  149. Cao S, Gu D and Shi Q 2017 Relation of microstructure, microhardness and underlying thermodynamics in molten pools of laser melting deposition processed TiC/Inconel 625 composites. J. Alloys Compd. 692: 758–769

    Article  Google Scholar 

  150. Larrea A, de la Fuente G F, Merino R I and Orera V M 2002 ZrO2-Al2O3 eutectic plates produced by laser zone melting. J. Eur. Ceram. Soc. 22: 191–198

    Article  Google Scholar 

  151. Guessasma S, Zhu Zhang W and J, Belhabib S and Nouri H, 2015 Challenges of additive manufacturing technologies from an optimisation perspective. Int. J. Simul. Multisci. Des. Optim. 6: A9

    Article  Google Scholar 

  152. Guessasma S, Belhabib S and Nouri H 2015 Significance of pore percolation to drive anisotropic effects of 3D printed polymers revealed with X-ray l-tomography and finite element computation. Polymer. 81: 29–36

    Article  Google Scholar 

  153. Liu H, Su H, Shen Z, Zhao D, Liu Y, Guo M, Guo Y, Zhang J, Liu L and Fu H 2019 Effect of scanning speed on the solidification process of Al2O3/GdAlO3/ZrO2 eutectic ceramics in a single track by selective laser melting. Ceram. Int. 45: 17252–17257

    Article  Google Scholar 

  154. Liu Q, Danlos Y, Song B, Zhang B, Yin S and Liao H 2015 Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic. J. Mater. Process. Technol. 222: 61–74

    Article  Google Scholar 

  155. Liu H, Su H, Shen Z, Zhao D, Liu Y, Guo Y, Guo H, Guo M, Xie K, Zhang J and Liu Land Fu H 2021 One-step additive manufacturing and microstructure evolution of melt-grown Al2O3/GdAlO3/ZrO2 eutectic ceramics by laser directed energy deposition. J. Eur. Ceram. Soc. 41: 3547–3558

    Article  Google Scholar 

  156. Fan Z, Zhao Y, Tan Q, Mo N, Zhang M X, Lu M and Huang H 2019 Nanostructured Al2O3-YAG-ZrO2 ternary eutectic components prepared by laser engineered net shaping. Acta Materialia. 170: 24–37

    Article  Google Scholar 

  157. Ludwig A and Leibbrandt S 2004 Generalised ‘Jackson–Hunt’ model for eutectic solidification at low and large Peclet numbers and any binary eutectic phase diagram. Mater. Sci. Eng. A. 375–377: 540–546

    Article  Google Scholar 

  158. Wang X, Zhong Y, Sun Q, Qi D, Yan F, Xian Q, Wang D, Du K and Wang J 2019 Competitive growth of Al2O3/YAG/ZrO2 eutectic ceramics during directional solidification: effect of interfacial energy. J. Am. Ceram. Soc. 102: 2176–2186

    Google Scholar 

  159. Wang X, Wang J, Sun L, Zhang H, Wang L, Lou L and Zhang J 2015 Microstructure evolution of Al2O3/Y3Al5O12 eutectic crystal during directional solidification. Scripta Mater. 108: 31–34

    Article  Google Scholar 

  160. Wang X, Zhong Y, Sun Q, Li Y, Zhang W, Qi D, Wang D and Jiang B 2018 Crystallography and interfacial structure in a directionally solidified Al 2 O 3/Y 3 Al 5 O 12/ZrO 2 eutectic crystal. Scripta Mater. 145: 23–27

    Article  Google Scholar 

  161. Foster B K, Reutzel E W, Nassar A R, Dickman C J and Hall B T 2015 A brief survey of sensing for metal-based powder bed fusion additive manufacturing. Dimensional Optical Metrology and Inspection for Practical Applications Iv. 9489: 94890B-1–94890B-9

  162. Furumoto T, Koizumi A, Alkahari M R, Anayama R, Hosokawa A and Tanaka and Ueda R T, 2015 Permeability and strength of a porous metal structure fabricated by additive manufacturing. J. Mater.Process. Technol. 219: 10–16

    Article  Google Scholar 

  163. Chianrabutra S, Mellor B G and Yang S 2014 A Dry Powder Material Delivery Device for Multiple Material Additive Manufacturing, Solid Freeform Fabrication Symposium. In: Proceedings of the University of Texas at Austin, Austin, Texas

  164. Akram J, Chalavadi P, Pal D and Stucker B 2018 Understanding grain evolution in additive manufacturing through modelling. Addit. Manuf. 21: 255–268

    Google Scholar 

  165. Raghavan N, Simunovic S, Dehoff R, Plotkowski A, Turner J, Kirka M and Babu S 2017 Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing. Acta Materialia. 140: 375–387

    Article  Google Scholar 

  166. Yang S and Evans J R G 2004 A multi-component powder dispensing system for three dimensional functional gradients. Mater. Sci. Eng. A. 379: 351–359

    Article  Google Scholar 

  167. Halloran J W 2016 Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu. Rev. Mater. Res. 46: 19–40

    Article  Google Scholar 

  168. Yang L and Miyanaji H 2017 Ceramic Additive Manufacturing: A Review of current status and challenges. Solid Freeform Fabrication. In: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference; pp. 652-679

  169. Hinczewski C, Corbel S and Chartier T 1998 Ceramic suspensions suitable for stereolithography. J. Euro. Ceram. Soc. 18: 583–590

    Article  Google Scholar 

  170. Bae C J and Halloran J W 2011 Integrally cored ceramic mold fabricated by ceramic stereolithography. Int. J. Appl. Ceram. Technol. 8: 1255–1262

    Article  Google Scholar 

  171. Blackburn S and Wilson D I 2008 Shaping ceramics by plastic processing. J. Eur. Ceram. Soc. 28: 1341–1351

    Article  Google Scholar 

  172. Woodward I, Purssell C P, Billson D R, Hutchins D A and Leigh S J 2015 Additively- manufactured piezoelectric devices. Phys. Status Solidi A. 212: 2107–2113

    Article  Google Scholar 

  173. Hall E O 1951 The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. London Sect. B. 64: 747

    Article  Google Scholar 

  174. Qian B and Shen Z 2013 Laser sintering of ceramics. J. Asian Ceram. Soc 1: 315–321

    Article  Google Scholar 

  175. Petch N J 1953 The cleavage strength of polycrystals. J. Iron Steel Inst. London. 174: 25

    Google Scholar 

  176. Lipowsky P, Bowick M and Meinke J et al. 2005 Direct visualization of dislocation dynamics in grain-boundary scars. Nature Mater. 4: 407–411

    Article  Google Scholar 

  177. Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X, Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel. Science. 305: 654-657

  178. Koch C C, Morris D G, Lu K and Inoue A 1999 Ductility of nanostructured materials. MRS Bull. 24: 54

    Article  Google Scholar 

  179. Weertman R, Farkas D, Hemker K, Kung H, Mayo M, Mitra R and Van Swygenhoven H 1999 Structure and mechanical behavior of bulk nanocrystalline materials. MRS Bull. 24: 44

    Article  Google Scholar 

  180. Masumura R A, Hazzledine P M and Pande C S 1998 Yield stress of fine grained materials. Acta Mater. 46: 4527

    Article  Google Scholar 

  181. Van Swygenhoven H and Caro A 1997 Plastic behavior of nanophase Ni: A molecular dynamics computer simulation. Appl. Phys. Lett. 71: 1652

    Article  Google Scholar 

  182. Watanabe T 2011 Grain boundary engineering: historical perspective and future prospects. J. Mater. Sci. 46: 4095–4115

    Article  Google Scholar 

  183. Watanabe T and Tsurekawa S 2004 Toughening of brittle materials by grain boundary engineering. Mater. Sci. Eng. A. 387–389: 447–455

    Article  Google Scholar 

  184. Leung C L A, Marussi S and Atwood R C et al. 2018 In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat. Commun. 9: 1355

    Article  Google Scholar 

  185. Roca J B, Vaishnav P and Fuchs E et al. 2016 Policy needed for additive manufacturing. Nat. Mater. 15: 815–818

    Article  Google Scholar 

  186. Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, Liu Li Y, Wang P and He Y 2019 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 39: 661–687

    Article  Google Scholar 

  187. Hwa L C, Rajoo S, Noor A M, Ahmad N and Uday M B 2017 Recent advances in 3D printing of porous ceramics: A review. Curr. Opinion Solid State Mater. Sci. 21: 323–347

    Article  Google Scholar 

  188. Mansfield B, Torres S, Yu T and Wu D 2019 A Review on Additive Manufacturing of Ceramics. In: Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. In: Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing. Erie, Pennsylvania, USA

  189. Deng D and Chen Y 2014 Origami-based self-folding structure fabrication based on 3D printing on polystyrene film, In: ASME mechanism and robotics conference, DETC2014-34901, Buffalo (NY, USA)

  190. Ashby M, Gibson L, Wegst U and Olive R 1995 The mechanical properties of natural materials. I. Material property charts. Proc. R. Soc. Lond. Ser. A. 450: 123–140

    Article  Google Scholar 

  191. Fratzl P, Gupta H, Paschalis E and Roschger P 2004 Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14: 2115–2123

    Article  Google Scholar 

  192. Espinosa H, Rim J, Barthelat F and Buehler M 2009 Merger of structure and material in nacre and bone—perspective on de novo biomimetic materials. Prog. Mater. Sci. 54: 1059–1100

    Article  Google Scholar 

  193. Sutherland I 1964 Sketchpad: a man–machine graphical communication system. In: Proceedings of the SHARE design automation workshop, pp. 6329–46

  194. Olsen L, Samavati F, Sousa M and Jorge J 2008 Sketch-based modeling: A survey. Comput. Graph. 33: 85–103

    Article  Google Scholar 

  195. Contero M, Naya F, Jorge J and Conesa J 2003 CIGRO: A minimal instruction set calligraphic interface for sketch-based modeling. Lecture Notes Comput. Sci. 2669: 549–558

    Article  Google Scholar 

  196. Yang C, Sharon D and van de Panne M 2005 Sketch-based modeling of parameterized objects. In: Proceedings of eurographics workshop on sketch-based interfaces and modeling, SBIM’05

  197. Lee J and Funkhouser T 2008 Sketch-based search and composition of 3D models. In: Proceedings of eurographics workshop on sketch-based interfaces and modelling. SBIM’08

Download references

Acknowledgement

MS would like to thank his undergraduate research supervisor Dr. MM, for his guidance and continuous support during the drafting of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mainak Saha or Manab Mallik.

Abbreviations

Abbreviations

3DGP:

3D Gel Printing

3DFD:

3D fibre deposition

AFM:

Atomic Force Microscopy

AJP:

Aerosol jet printing

AM:

Additive manufacturing

AYZ:

Alumina-Yttria-Zirconia

BJ3DP:

Binder jet 3D printing

BSE:

Back scattered electron

CAD:

Computer-aided design

CAM:

Computer-aided manufacturing

CEM:

Composite-extrusion modeling

CLG:

Ceramic laser gelling

CLS:

Ceramic laser sintering

CIB:

Chemically induced bonding

CODE:

Ceramic-on demand extrusion

DED:

Directed energy deposition

DLD:

Direct laser deposition

DLF:

Direct laser fabrication

DMLS:

Direct metal laser sintering

EBM:

Electron beam melting

EBSD:

Electron Backscatter Diffraction

EBW:

Electron beam welding

EDS:

Energy Dispersive Spectroscopy

EFF:

Extrusion free forming

EPD:

Electrophoretic deposition

FDC:

Fused deposition of ceramics

FDM:

Fused deposition modeling

FEF:

Freeze-form extrusion fabrication

FFF:

Fused Filament Fabrication

FFT:

Fast Fourier Transformation

FIB:

Focussed Ion Beam

GAP:

Gaolinia-alumina eutectic

GB:

Grain boundary

GBE:

Grain boundary engineering

HIP:

Hot isostatic pressing

HRTEM:

High-resolurion Transmission Electron Microsopy

IB:

Interphase boundary

IJP:

Inkjet printing

IPF:

Inverse pole figure

ITO:

Indium tin oxide

LAMP:

Large Area Maskless Photopolymerization

LCM:

Lithography based Ceramic Manufacturing

LDED:

Laser directed energy deposition

LEM:

Laminated Engineering Materials

LENS:

Laser engineered net shaping

LOM:

Laminated object manufacturing

LPS:

Liquid phase sintering

LSMO:

Lanthanum strontium manganite

MCZ:

Microstructural coarsening zone

MIM:

Metal injection molding

MJS:

Multiphase jet solidification

MMC:

Metal matrix composite

OR:

Orientation relationship

P-3DP:

Powder-based three-dimensional printing

PE:

Polyethylene

PIM:

Powder injection molding

PMN:

Lead magnesium niobate

PVA:

Polyvinyl alcohol

PZT:

Lead zirconium titanate

RO:

Alkaline oxide (R: Alkali)

S-3DP:

Slurry based three-dimensional printing

SEM:

Scanning Electron Microscopy

SLA:

Stereolithography

SLM:

Selective laser melting

SLRS:

Selective laser reactive sintering

SLS:

Selective laser sintering

SSS:

Solid state sintering

TJ:

Triple junction

TKD:

Transmission Kikuchi Diffraction

UHTC:

Ultra high temperature ceramic

UHTCMC:

Ultra high temperature ceramic matrix composite

XRD:

X-ray Diffraction

YAG:

Yttrium Aluminium Garnet

YBCO:

Yttrium barium copper oxide

YSZ:

Yttria stabilised Zirconia

ZTA:

Zirconia (ZrO2) toughened alumina (Al2O3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, M., Mallik, M. Additive manufacturing of ceramics and cermets: present status and future perspectives. Sādhanā 46, 162 (2021). https://doi.org/10.1007/s12046-021-01685-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-021-01685-2

Keywords

Navigation