Skip to main content

Advertisement

Log in

Review of additive manufacturing methods for high-performance ceramic materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) has become a versatile and diversified technology that has made a huge difference in how things are being manufactured. Substantial growth has been observed in the development of ceramic materials for AM processes. However, ceramic parts manufactured by AM methods often exhibit deficiencies in mechanical properties and performance. Recent research developments have included improvement of performance and mechanical properties by introducing a material preparation process and additional post-processing techniques to improve the fabrication process. This paper contemplates and reviews the advancements made in AM techniques to fabricate high-performance ceramic (HPC) materials, also known as advanced ceramics. AM processes are classified as per ASTM standards and the technologies implemented are sub-listed. The principles, mechanical properties, advantages, disadvantages, applications, and limitations of each technology are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenkins V (2002) Communication from the commission: a sustainable Europe for a better world: a European Union Strategy for sustainable development [Commission’s Proposal to the Göteborg European Council]. Journal of Environmental Law 14(2):261–264. https://www.jstor.org/stable/44248370. Accessed 18 Aug 2018

  2. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modeling approaches: a critical review. Int J Adv Manuf Technol 83(1–4):389–405

    Article  Google Scholar 

  3. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928

    Article  Google Scholar 

  4. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141

    Article  Google Scholar 

  5. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290

    Article  Google Scholar 

  6. Costa ECE, Duarte JP, Bártolo P (2017) A review of additive manufacturing for ceramic production. Rapid Prototyp J 23(5):954–963

    Article  Google Scholar 

  7. Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53

    Article  Google Scholar 

  8. Ferrage L, Bertrand G, Lenormand P, Grossin D, Ben-Nissan B (2017) A review of the additive manufacturing (3DP) of bioceramics: alumina, zirconia (PSZ) and hydroxyapatite. J Aust Ceram Soc 53(1):11–20

    Article  Google Scholar 

  9. Hagedorn Y (2017) Laser additive manufacturing of ceramic components: materials, processes, and mechanisms. In Laser Additive Manufacturing (pp. 163–180). Woodhead Publishing. https://www.sciencedirect.com/science/article/pii/B9780081004333000063. Accessed 23 Jan 2018

  10. Hammel EC, Ighodaro OLR, Okoli OI (2014) Processing and properties of advanced porous ceramics: an application based review. Ceram Int 40(10):15351–15370

    Article  Google Scholar 

  11. Deckers J, Vleugels J, Kruth J-P (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Technol 5(4):245–260

    Google Scholar 

  12. Cawley JD (1999) Solid freeform fabrication of ceramics. Curr Opin Solid State Mater Sci 4:483–489, 1999

    Article  Google Scholar 

  13. ASTM International (2013) F2792-12a - standard terminology for additive manufacturing technologies (ASTM International, West Conshohocken, PA, 2012). P. Jain, AM Kuthe, Feasibility study of manufacturing using rapid prototyping: FDM approach. Procedia Eng 63:4–11

  14. Schwentenwein M, Homa J (2015) Additive manufacturing of dense alumina ceramics. Int J Appl Ceram Technol 12(1):1–7

    Article  Google Scholar 

  15. Wang J-C and Dommati H (2018) Fabrication of zirconia ceramic parts by using solvent-based slurry stereolithography and sintering. Int J Adv Manuf Technol 98(5–8):1537–1546

  16. Scheithauer U, Schwarzer E, Moritz T, Michaelis A (2018) Additive manufacturing of ceramic heat exchanger: opportunities and limits of the lithography-based ceramic manufacturing (LCM). J Mater Eng Perform 27(1):14–20

    Article  Google Scholar 

  17. Mitteramskogler G, Gmeiner R, Felzmann R, Gruber S, Hofstetter C, Stampfl J, Ebert J, Wachter W, Laubersheimer J (2014) Light curing strategies for lithography-based additive manufacturing of customized ceramics. Addit Manuf 1:110–118

    Article  Google Scholar 

  18. Snelling DA, Williams CB, Suchicital CTA, Druschitz AP (2017) Binder jetting advanced ceramics for metal-ceramic composite structures. Int J Adv Manuf Technol 92(1–4):531–545

    Article  Google Scholar 

  19. Gonzalez JA, Mireles J, Lin Y, Wicker RB (2016) Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int 42(9):10559–10564

    Article  Google Scholar 

  20. Curodeau A, Sachs E, Caldarise S (2000) Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J Biomed Mater Res 53(5):525–535

    Article  Google Scholar 

  21. Ainsley C, Reis N, Derby B (2002) Freeform fabrication by controlled droplet deposition of powder filled melts. J Mater Sci 37(15):3155–3161

    Article  Google Scholar 

  22. Noguera R, Lejeune M, Chartier T (2005) 3D fine scale ceramic components formed by ink-jet prototyping process. J Eur Ceram Soc 25(12):2055–2059

    Article  Google Scholar 

  23. Derby B (2011) Inkjet printing ceramics: from drops to solid. J Eur Ceram Soc 31(14):2543–2550

    Article  Google Scholar 

  24. Soltman D, Subramanian V (Mar. 2008) Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5):2224–2231

    Article  Google Scholar 

  25. Scheithauer U, Johne R, Weingarten S, Schwarzer E, Richter HJ, Moritz T, Michaelis A (2018) Investigation of droplet deposition for suspensions usable for thermoplastic 3D printing (T3DP). J Mater Eng Perform 27(1):44–51

    Article  Google Scholar 

  26. Wang T, Derby B (2005) Ink-jet printing and sintering of PZT. J Am Ceram Soc 88(8):2053–2058

    Article  Google Scholar 

  27. Onagoruwa S, Bose S, and Bandyopadhyay A (2001) Fused deposition of ceramics (FDC) and composites, Proc. Solid Free. Fabr. Symp., no. June, pp. 224–231

  28. Vaidyanathan R, Walish J, Lombardi JL, Kasichainula S, Calvert P, Cooper KC (2000) Extrusion freeforming of functional ceramic prototypes. JOM 52(12):34–37

    Article  Google Scholar 

  29. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36

    Article  Google Scholar 

  30. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL (2015) Review of selective laser melting: materials and applications. Appl Phys Rev vol. 2, no. 4

  31. Shahzad K, Deckers J, Kruth JP, Vleugels J (2013) Additive manufacturing of alumina parts by indirect selective laser sintering and post processing. J Mater Process Technol 213(9):1484–1494

    Article  Google Scholar 

  32. Tang HH, Chiu ML, Yen HC (2011) Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J Eur Ceram Soc 31(8):1383–1388

    Article  Google Scholar 

  33. Wilkes J, Hagedorn Y, Meiners W, Wissenbach K (2013) Additive manufacturing of ZrO 2 -Al 2 O 3 ceramic components by selective laser melting. Rapid Prototyp J 19(1):51–57

    Article  Google Scholar 

  34. Wang XH, Fuh JYH, Wong YS, Tang YX (2003) Laser sintering of silica sand - mechanism and application to sand casting mould. Int J Adv Manuf Technol 21(12):1015–1020

    Article  Google Scholar 

  35. Liu K, Shi Y, He W, Li C, Wei Q, Liu J (2013) Densification of alumina components via indirect selective laser sintering combined with isostatic pressing. Int J Adv Manuf Technol 67(9–12):2511–2519

    Article  Google Scholar 

  36. Liu K, Sun H, Tan Y, Shi Y, Liu J, Zhang S, Huang S (2017) Additive manufacturing of traditional ceramic powder via selective laser sintering with cold isostatic pressing. Int J Adv Manuf Technol 90(1–4):945–952

    Article  Google Scholar 

  37. Ho HCH, Gibson I, Cheung WL (1999) Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J Mater Process Technol 89–90:204–210

    Article  Google Scholar 

  38. Gabrielsson J, Politis D, Dahlstrand ÅL and Patents A, Article information: users who downloaded this article also downloaded: about Emerald www.emeraldinsight.com Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of 2014.

  39. Klosterman DJ, Chartoff R, Priore B, Osborne N, Graves G, Lightman A, Han G, Pak S, Weaver J (1996) Structural composites via laminated object manufacturing LOM. Solid Free Fabr Symp Proc:105–115

  40. Jabbari M, Bulatova R, Tok AIY, Bahl CRH, Mitsoulis E, Hattel JH (2016) Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis. Mater Sci Eng B Solid-State Mater Adv Technol 212:39–61

    Article  Google Scholar 

  41. Zhang Y, He X, Du S, Zhang J (2001) Al2O3ceramics preparation by LOM (laminated object manufacturing). Int J Adv Manuf Technol 17(7):531–534

    Article  Google Scholar 

  42. Horvitz D, Gotman I, Gutmanas EY, Claussen N (2002) In situ processing of dense Al2O3-Ti aluminide interpenetrating phase composites. J Eur Ceram Soc 22(6):947–954

    Article  Google Scholar 

  43. Yin X, Travitzky N, Greil P (2007) Near-net-shape fabrication of Ti3AlC2-based composites. Int J Appl Ceram Technol 4(2):184–190

    Article  Google Scholar 

  44. Krinitcyn M, Fu Z, Harris J, Kostikov K, Pribytkov GA, Greil P, Travitzky N (2017) Laminated object manufacturing of in-situ synthesized MAX-phase composites. Ceram Int 43(12):9241–9245

    Article  Google Scholar 

  45. Windsheimer H, Travitzky N, Hofenauer A, Greil P (2007) Laminated object manufacturing of preceramic-paper-derived Si-SiC composites. Adv Mater 19(24):4515–4519

    Article  Google Scholar 

  46. Li Y, Hu Y, Cong W, Zhi L, Guo Z (2017) Additive manufacturing of alumina using laser engineered net shaping: effects of deposition variables. Ceram Int 43(10):7768–7775

    Article  Google Scholar 

  47. Yan S, Wu D, Ma G, Niu F, Kang R, Guo D (2017) Formation mechanism and process optimization of nano Al2O3-ZrO2eutectic ceramic via laser engineered net shaping (LENS). Ceram Int 43(17):14742–14747

    Article  Google Scholar 

  48. Niu F, Wu D, Ma G, Wang J, Zhuang J, Jin Z (2016) Rapid fabrication of eutectic ceramic structures by laser engineered net shaping. Procedia CIRP 42 Isem Xviii:91–95

    Article  Google Scholar 

  49. Weimer AW (2012) Carbide, nitride and boride materials synthesis and processing. Springer Science & Business Media pp. 16

  50. Balla VK, Bose S, Bandyopadhyay A (2008) Processing of bulk alumina ceramics using laser engineered net shaping. Int J Appl Ceram Technol 5(3):234–242

    Article  Google Scholar 

  51. Ebert J, Özkol E, Zeichner A, Uibel K, Weiss Ö, Koops U, Telle R, Fischer H (2009) Direct inkjet printing of dental prostheses made of zirconia. J Dent Res 88(7):673–676

    Article  Google Scholar 

  52. He R, Liu W, Wu Z, An D, Huang M, Wu H, Jiang Q, Ji X, Wu S, Xie Z (2018) Fabrication of complex-shaped zirconia ceramic parts via a DLP- stereolithography-based 3D printing method. Ceram Int 44(3):3412–3416

    Article  Google Scholar 

  53. Zhao HP, Ye CS, Fan ZT, and Shi YN (2016) 3D printing of ZrO2 ceramic using nano-zirconia suspension as a binder, Proc. 2015 4th Int. Conf. Sensors, Meas. Intell. Mater., vol. 43, no. Icsmim 2015, pp. 654–657

  54. Corcione CE, Greco A, Montagna F, Licciulli A, Maffezzoli A (2005) Silica moulds built by stereolithography. J Mater Sci 40(18):4899–4904

    Article  Google Scholar 

  55. Schwetz KA, Sigl LS, Pfau L (1997) Mechanical properties of injection molded B 4 C – C. Ceramics 76(133):68–76

    Google Scholar 

  56. Thornton A (2015) Freeze-form extrusion fabrication of boron carbide Masters Theses. https://scholarsmine.mst.edu/masters_theses/7439/

  57. Kluess D, Bergschmidt P, Mittelmeier W, and Bader R (2014) Ceramics for joint replacement, in Joint replacement technology, Elsevier pp. 152–166

  58. Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids 120(1–3):138–151

    Article  Google Scholar 

  59. Neuman EW, Hilmas GE, Fahrenholtz WG (2015) Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 C. J Eur Ceram Soc 35(2):463–476

    Article  Google Scholar 

  60. Bal BS, Rahaman MN (2012) Orthopedic applications of silicon nitride ceramics. Acta Biomater 8(8):2889–2898

    Article  Google Scholar 

  61. Pittroff W, Erbert G, Beister G, Bugge F, Klein A, Knauer A, Maege J, Ressel P, Sebastian J, Staske R, Traenkle G (2001) Mounting of high power laser diodes on boron nitride heat sinks using an optimized Au/Sn metallurgy. IEEE Trans Adv Packag 24(4):434–441

    Article  Google Scholar 

  62. Kelly Patrick M, Francis Rose LR (2002) The martensitic transformation in ceramics — its role in transformation toughening. Prog Mater Sci 47(5):463–557

    Article  Google Scholar 

  63. Wu H, Liu W, He R, Wu Z, Jiang Q, Song X, Chen Y, Cheng L, Wu S (2017) Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int 43(1):968–972

    Article  Google Scholar 

  64. Yen HC (2015) Experimental studying on development of slurry-layer casting system for additive manufacturing of ceramics. Int J Adv Manuf Technol 77(5–8):915–925

    Article  Google Scholar 

  65. Costakis WJ, Rueschhoff LM, Diaz-Cano AI, Youngblood JP, Trice RW (2016) Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. J Eur Ceram Soc 36(14):3249–3256

    Article  Google Scholar 

  66. Seerden KAM, Reis N, Evans JRG, Grant PS, Halloran JW, Derby B (2001) Ink-jet printing of wax-based alumina suspensions. J Am Ceram Soc 84(11):2514–2520

    Article  Google Scholar 

  67. Scheithauer U, Schwarzer E, Richter HJ, Moritz T (2015) Thermoplastic 3D printing - an additive manufacturing method for producing dense ceramics. Int J Appl Ceram Technol 12(1):26–31

    Article  Google Scholar 

  68. Ghazanfari A, Li W, Leu MC, Hilmas GE (2017) A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 15:102–112

    Article  Google Scholar 

  69. Bengisu M (2013) Engineering ceramics. Springer Science & Business Media

  70. Somiya S, Roy R (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23(6):453–460

    Article  Google Scholar 

  71. Nakonieczny DS, Antonowicz M, Paszenda ZK, Radko T, Drewniak S, Bogacz W, Krawczyk C (2018) Experimental investigation of particle size distribution and morphology of alumina-yttria-ceria-zirconia powders obtained via sol–gel route. Biocybern Biomed Eng 38(3):535–543

    Article  Google Scholar 

  72. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater Lett 10(1–2):6–12

    Article  Google Scholar 

  73. Li L et al. (2018) Synthesis of nano-AlN powders from Al wire by arc plasma at atmospheric pressure, Ceram Int 44(17):21810–21815

  74. Grida I, Evans JRG (2003) Extrusion freeforming of ceramics through fine nozzles. J Eur Ceram Soc 23(5):629–635

    Article  Google Scholar 

  75. Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37(10):891–898

    Article  Google Scholar 

  76. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  Google Scholar 

  77. Lusquiños F, del Val J, Arias-González F, Comesaña R, Quintero F, Riveiro A, Boutinguiza M, Jones JR, Hill RG, Pou J (2014) Bioceramic 3D implants produced by laser assisted additive manufacturing. Phys Procedia 56:309–316

    Article  Google Scholar 

  78. Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA (2015) 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater 30:232–247

    Article  Google Scholar 

  79. Parthasarathy J (2014) 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg 4(1):9–18

    Article  Google Scholar 

  80. Rabinskiy LN, Sitnikov SA, Pogodin VA, Ripetskiy AA, Solyaev YO (2017) Binder jetting of Si3N4 ceramics with different porosity. Solid State Phenom 269:37–50

    Article  Google Scholar 

  81. Mancuso E, Alharbi N, Bretcanu OA, Marshall M, Birch MA, McCaskie AW, Dalgarno KW (2017) Three-dimensional printing of porous load-bearing bioceramic scaffolds. Proc Inst Mech Eng Part H J Eng Med 231(6):575–585

    Article  Google Scholar 

  82. Silva NRFA, Witek L, Coelho PG, Thompson VP, Rekow ED, Smay J (2011) Additive CAD/CAM process for dental prostheses. J Prosthodont Implant Esthet Reconstr Dent 20(2):93–96

    Google Scholar 

  83. Dehurtevent M, Robberecht L, Hornez J-C, Thuault A, Deveaux E, Béhin P (2017) Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater 33(5):477–485

    Article  Google Scholar 

  84. Syed-Khaja A and Franke J (2016) Selective laser melting for additive manufacturing of high-temperature ceramic circuit carriers, in Electronic Components and Technology Conference (ECTC), 2016 IEEE 66th. pp. 837–842

  85. Jones CS, Lu X, Renn M, Stroder M, Shih W-S (2010) Aerosol-jet-printed, high-speed, flexible thin-film transistor made using single-walled carbon nanotube solution. Microelectron Eng 87(3):434–437

    Article  Google Scholar 

  86. Sarobol P, Cook A, Clem PG, Keicher D, Hirschfeld D, Hall AC, Bell NS (2016) Additive manufacturing of hybrid circuits. Annu Rev Mater Res 46(1):41–62

    Article  Google Scholar 

  87. Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15(8):804–809

    Article  Google Scholar 

  88. Huang T, Mason MS, Zhao X, Hilmas GE, Leu MC (2009) Aqueous-based freeze-form extrusion fabrication of alumina components. Rapid Prototyp J 15(2):88–95

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Technology, Taiwan, R.O.C, for providing funds for projects MOST 104-2622-E-027-005-CC and 105-2221-E-027-036-MY2. This work was also financially supported by the “Additive Manufacturing Center for Mass Customization Production” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh Dommati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JC., Dommati, H. & Hsieh, SJ. Review of additive manufacturing methods for high-performance ceramic materials. Int J Adv Manuf Technol 103, 2627–2647 (2019). https://doi.org/10.1007/s00170-019-03669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03669-3

Keywords

Navigation