Skip to main content

Advertisement

Log in

Inlet swirl decay of non-Newtonian fluid in laminar flows through tubes

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Use of swirling velocity at the inlet has been a classical way to enhance the transport properties of flow within pipes. Owing to the laminar nature of flow of fluids in small tubes, enhancing transport within such tubes is very important for applications involving fluid mixing or heat transfer. Non-Newtonian fluids have varied applications in small pipes ranging from heat pipes to micro heat exchangers. To enhance the transport characteristics, we adopt the method of including swirling of fluid at the inlet of the pipe. Considering this, we investigate the effect of the power-law index of the fluid on the decay of the inlet swirl. We find that the length through which swirl decays to 1% of its value at inlet is strongly dependent on the power-law index value. A correlation for the decay length as a function of Reynolds number and power-law index is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

\( S \) :

swirl number

\( n \) :

power law index

\( D \) :

diameter of the pipe, \( m \)

\( r_{t} \) :

transition radius of Rankine Vortex, \( m \)

\( z \) :

axial coordinate, \( m \)

\( r \) :

radial coordinate, \( m \)

\( Re \) :

Reynolds number

U :

Inlet axial velocity, \( m/s \)

V z :

axial velocity, \( m/s \)

V θ :

swirl Velocity, \( m/s \)

V r :

radial Velocity, \( m/s \)

\( \eta \) :

viscosity, \( kg/ms \)

\( \kappa \) :

consistency index of the fluid, \( kg/ms^{1 - n} \)

\( \theta \) :

azimuthal coordinate, radians

ρ :

density, \( kg/m^{3} \)

0 :

value at inlet

References

  1. Doorly D J, Sherwin S J, Franke P T and Peiró J 2002 Vortical Flow Structure Identification and Flow Transport in Arteries. Comput. Methods Biomech. Biomed. Eng. 5: 261–273

    Article  Google Scholar 

  2. Sınmazışık G and Öveçoğlu M L 2006 Physical properties and microstructural characterization of dental porcelains mixed with distilled water and modeling liquid. Dent. Mater. 22: 735–745

    Article  Google Scholar 

  3. Mala G M and Li D 1999 Flow characteristics of water in microtubes. Int. J. Heat Fluid Flow 20: 142–148

    Article  Google Scholar 

  4. Sharp K V and Adrian R J 2004 Transition from laminar to turbulent flow in liquid filled microtubes. Exp. Fluids 36: 741–747

    Article  Google Scholar 

  5. Meinhart C D, Wereley S T and Santiago J G 1999 PIV measurements of a microchannel flow. Exp. Fluids 27: 414–419

    Article  Google Scholar 

  6. Leal L G 2007 Advanced transport phenomena: fluid mechanics and convective transport processes, Cambridge: Cambridge University Press

    Book  Google Scholar 

  7. Hamdan M O 2016 Numerical analysis of Enhanced Heat Transfer in Developing Laminar Pipe Flow using Decaying Swirl at the Inlet. J. Enhanc. Heat Transf. 23:

    Google Scholar 

  8. Bali T 1998 Modelling of heat transfer and fluid flow for decaying swirl flow in a circular pipe. Int. Commun. Heat Mass Transf. 25: 349–358

    Article  Google Scholar 

  9. Yilmaz M, Çomakli Ö and Yapici S 1999 Enhancement of heat transfer by turbulent decaying swirl flow. Energy Convers. Manag. 40: 1365–1376

    Article  Google Scholar 

  10. Ahmadvand M, Najafi A F and Shahidinejad S 2010 An experimental study and CFD analysis towards heat transfer and fluid flow characteristics of decaying swirl pipe flow generated by axial vanes. Meccanica 45: 111–129

    Article  Google Scholar 

  11. Jin S, Liu Y, Wang W, Cao Z and Koyama H S 2006 Numerical evaluation of two-fluid mixing in a swirl micro-mixer. J. Hydrodyn. Ser. B. 18: 542–546

    Article  Google Scholar 

  12. Tanaka S, Shimura M, Fukushima N, Tanahashi M and Miyauchi T 2011 DNS of turbulent swirling premixed flame in a micro gas turbine combustor. Proc. Combust. Inst. 33: 3293–3300

    Article  Google Scholar 

  13. Kreith F and Sonju O K 1965 The decay of a turbulent swirl in a pipe. J. Fluid Mech. 22: 257–271

    Article  Google Scholar 

  14. Reader-Harris M J 1994 The decay of swirl in a pipe. Int. J. Heat Fluid Flow. 15: 212–217

    Article  Google Scholar 

  15. Scott C J and Bartelt K W 1976 Decaying Annular Swirl Flow With Inlet Solid Body Rotation. J. Fluids Eng. 98: 33–40

    Article  Google Scholar 

  16. Ayinde T F 2010 A generalized relationship for swirl decay in laminar pipe flow. Sadhana 35: 129–137

    Article  Google Scholar 

  17. Yao S and Fang T 2012 Analytical solutions of laminar swirl decay in a straight pipe. Commun. Nonlinear Sci. Numer. Simul. 17: 3235–3246

    Article  MathSciNet  Google Scholar 

  18. Kaushik P, Pati S, Som S K and Chakraborty S 2012 Hydrodynamic Swirl Decay in Microtubes with Interfacial Slip. Nanoscale Microscale Thermophys. Eng. 16: 133–143

    Article  Google Scholar 

  19. Kaushik P, Pati S, Som S K and Chakraborty S 2012 Hydrodynamic and thermal transport characteristics of swirling flows through microchannels with interfacial slip. Int. J. Heat Mass Transf. 55: 4359–4365

    Article  Google Scholar 

  20. Pati S, Som S K and Chakraborty S 2013 Thermodynamic performance of microscale swirling flows with interfacial slip. Int. J. Heat Mass Transf. 57: 397–401

    Article  Google Scholar 

  21. Liu W and Bai B 2015 Swirl decay in the gas–liquid two-phase swirling flow inside a circular straight pipe. Exp. Therm. Fluid Sci. 68: 187–195

    Article  Google Scholar 

  22. Granata J, Xu L, Rusak Z and Wang S 2016 A Numerical Simulation Algorithm of the Inviscid Dynamics of Axisymmetric Swirling Flows in a Pipe. J. Fluids Eng. 138: 91402–91414

    Article  Google Scholar 

  23. Beaubert F, Pálsson H, Lalot S, Choquet I and Bauduin H 2016 Fundamental mode of freely decaying laminar swirling flows. Appl. Math. Model. 40: 6218–6233

    Article  MathSciNet  Google Scholar 

  24. Xu L, Rusak Z, Wang S and Taylor S 2015 Nonlinear Control of Axisymmetric Swirling Flows in a Long Finite-Length Pipe. J. Fluids Eng. 138: 21201–21216

    Article  Google Scholar 

  25. Pati S, Kumar V 2018 Effects of temperature-dependent thermo-physical properties on hydrodynamic swirl decay in microtubes. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 0954408918755782

    Google Scholar 

  26. Rocha A D, Bannwart A C and Ganzarolli M M 2015 Numerical and experimental study of an axially induced swirling pipe flow. Int. J. Heat Fluid Flow. 53: 81–90

    Article  Google Scholar 

  27. Patil A G 2000 Laminar flow heat transfer and pressure drop characteristics of power-law fluids inside tubes with varying width twisted tape inserts. J. Heat Transfer. 122: 143–149

    Article  Google Scholar 

  28. Saha S K, Dutta A and Dhal S K 2001 Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements. Int. J. Heat Mass Transf. 44: 4211–4223

    Article  Google Scholar 

  29. Manglik R M and Bergles A E 2003 Swirl flow heat transfer and pressure drop with twisted-tape inserts. Adv. Heat transf. 36: 183–266

    Article  Google Scholar 

  30. Patankar S V 1980 Numerical heat transfer and fluid flow, McGraw-Hill, New York

    MATH  Google Scholar 

  31. Mandal P K, Chakravarty S, Mandal A and Amin N 2007 Effect of body acceleration on unsteady pulsatile flow of non-newtonian fluid through a stenosed artery. Appl. Math. Comput. 189: 766–779

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Kaushik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathail, A., Pranav, C.M. & Kaushik, P. Inlet swirl decay of non-Newtonian fluid in laminar flows through tubes. Sādhanā 44, 238 (2019). https://doi.org/10.1007/s12046-019-1221-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-019-1221-y

Keywords

Navigation