Skip to main content
Log in

Optimization of imperfect economic manufacturing models with a power demand rate dependent production rate

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The constant demand rate is the most common assumption of the basic economic production quantity model, which is not very frequent in practice. In real world situations, demand usually varies with time. With regard to the widespread necessity of power demand pattern, demand is supposed to follow a power law. Another unrealistic assumption is perfect quality of all items. This paper presents a production system with defective items to determine the optimal replenishment quantity, cycle length and backordered size with a power demand rate dependent production rate. We assume that a manufacturer may be faced with three different cases regarding to the date that defective items are drawn from inventory. The set-up, backordering, inspection, and production costs, as well as holding cost of both perfect and imperfect items are accounted in the inventory system. An algorithm is offered to optimize total inventory cost and then numerical analyses are presented to demonstrate the applicability of the proposed models. Finally, some sensitivity analyses and managerial insights are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Harris F W 1913 How many parts to make at once. The Magazine of Management. 10(2): 135–136. (152)

  2. Taft E W 1918 The most economical production lot. Iron Age 101(18): 1410–1412

    Google Scholar 

  3. Silver E A and Meal H C 1973 A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment. Production and Inventory Management 14(2): 64–74

    Google Scholar 

  4. Donaldson W A 1977 Inventory replenishment policy for a linear trend in demand—An analytical solution. Oper. Res. Q. 28(3): 663–670

    Article  MATH  Google Scholar 

  5. Ritchie E 1984 The EOQ for linear increasing demand: A simple optimal solution. J. Oper. Res. Soc. 35(10): 949–952

    Article  MathSciNet  MATH  Google Scholar 

  6. Bose S, Goswami A and Chaudhuri K S 1995 An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. J. Oper. Res. Soc. 46(6): 771–782

    Article  MATH  Google Scholar 

  7. Teng J T 1996 A deterministic inventory replenishment model with a linear trend in demand. Oper. Res. Lett. 19(1): 33–41

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhao G Q, Yang J and Rand G K 2001 Heuristics for replenishment with linear decreasing demand. Int. J. Prod. Econ. 69(3): 339–345

    Article  Google Scholar 

  9. Lo W Y, Tsai C H and Li R K 2002 Exact solution of inventory replenishment policy for a linear trend in demand–two-equation model. Int. J. Prod. Econ. 76(2): 111–120

    Article  Google Scholar 

  10. Yang J, Zhao G Q and Rand G K 2004 An eclectic approach for replenishment with non-linear decreasing demand. Int. J. Prod. Econ. 92(2): 125–131

    Article  Google Scholar 

  11. Omar M and Yeo I 2009 A model for a production–repair system under a time-varying demand process. Int. J. Prod. Econ. 119(1): 17–23

    Article  Google Scholar 

  12. Maihami R and Kamalabadi I N 2012 Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. Int. J. Prod. Econ. 136(1): 116–122

    Article  Google Scholar 

  13. Pando V, San-José L A, García-Laguna J and Sicilia J 2013 An economic lot-size model with non-linear holding cost hinging on time and quantity. Int. J. Prod. Econ. 145(1): 294–303

    Article  Google Scholar 

  14. Naddor E 1966 Inventory systems. New York: Wiley

    MATH  Google Scholar 

  15. Lee W C and Wu J W 2002 An EOQ model for items with Weibull distributed deterioration, shortages and power demand pattern. Int. J. Inf. Manag. Sci. 13(2): 19–34

    MathSciNet  MATH  Google Scholar 

  16. Dye C Y 2004 A Note on “An EOQ model for items with Weibull distributed deterioration, shortages and power demand pattern”. Int. J. Inf. Manag. Sci. 15: 81–84

    MATH  Google Scholar 

  17. Singh T J, Singh S R and Dutt R 2009 An EOQ model for perishable items with power demand and partial backlogging. Int. J. Prod. Econ. 15(1): 65–72

    Google Scholar 

  18. Abdul-Jalbar B, Gutiérrez J M and Sicilia J 2009 A two-echelon inventory/distribution system with power demand pattern and backorders. Int. J. Prod. Econ. 122(2): 519–524

    Article  Google Scholar 

  19. Rajeswari N and Vanjikkodi T 2011 Deteriorating inventory model with power demand and partial backlogging. International Journal of Mathematical Archive (IJMA). 2(9): 1495–1501

    Google Scholar 

  20. Sicilia J, Febles-Acosta J and González-De La Rosa M 2012 Deterministic inventory systems with power demand pattern. Asia-Pacific Journal of Operational Research 29(05): 1250025

    Article  MathSciNet  MATH  Google Scholar 

  21. Sicilia J, Febles-Acosta J and González-De la Rosa M 2013 Economic order quantity for a power demand pattern system with deteriorating items. Eur. J. Indist. Eng. 7(5): 577–593

    Article  Google Scholar 

  22. Sicilia J, González-De-la-Rosa M, Febles-Acosta J and Alcaide-López-de-Pablo D 2015 Optimal inventory policies for uniform replenishment systems with time-dependent demand. Int. J. Prod. Res. 53(12): 3603–3622

    Article  Google Scholar 

  23. Sicilia J, González-De-la-Rosa M, Febles-Acosta J and Alcaide-López-de-Pablo D 2014 An inventory model for deteriorating items with shortages and time-varying demand. Int. J. Prod. Econ. 155: 155–162

    Article  Google Scholar 

  24. Sicilia J, González-De-la-Rosa M, Febles-Acosta J and Alcaide-López-de-Pablo D 2014 Optimal policy for an inventory system with power demand, backlogged shortages and production rate proportional to demand rate. Int. J. Prod. Econ. 155: 163–171

    Article  Google Scholar 

  25. San-José L A, Sicilia J, González-De-la-Rosa M and Febles-Acosta J 2017 Optimal inventory policy under power demand pattern and partial backlogging. Appl. Math. Model. 46: 618–630

    Article  MathSciNet  Google Scholar 

  26. Keshavarzfard R, Makui A and Tavakkoli-Moghaddam R 2019 A multi-product pricing and inventory model with production rate proportional to power demand rate. Advances in Production Engineering and Management 14(1): 112–124

    Article  Google Scholar 

  27. Shih W 1980 Optimal inventory policies when stockouts result from defective products. Int. J. Prod. Res. 18(6): 677–686

    Article  Google Scholar 

  28. Schwaller R L 1988 EOQ under inspection costs. Production and Inventory Management Journal 29(3): 22

    Google Scholar 

  29. Salameh M K and Jaber M Y 2000 Economic production quantity model for items with imperfect quality. Int. J. Prod. Econ. 64(1): 59–64

    Article  Google Scholar 

  30. Hayek P A and Salameh M K 2001 Production lot sizing with the reworking of imperfect quality items produced. Production Planning and Control. 12(6): 584–590

    Article  Google Scholar 

  31. Goyal S K, Huang C K and Chen K C 2003 A simple integrated production policy of an imperfect item for vendor and buyer. Production Planning and Control 14(7): 596–602

    Article  Google Scholar 

  32. Chiu Y P 2003 Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging. Engineering Optimization 35(4): 427–437

    Article  Google Scholar 

  33. Jamal A M M, Sarker B R and Mondal S 2004 Optimal manufacturing batch size with rework process at a single-stage production system. Comput. Ind. Eng. 47(1): 77–89

    Article  Google Scholar 

  34. Ojha D, Sarker B R and Biswas P 2007 An optimal batch size for an imperfect production system with quality assurance and rework. Int. J. Prod. Res. 45(14): 3191–3214

    Article  MATH  Google Scholar 

  35. Cárdenas-Barrón L E 2009 Economic production quantity with rework process at a single-stage manufacturing system with planned backorders. Comput. Ind. Eng. 57(3): 1105–1113

    Article  Google Scholar 

  36. Taleizadeh A, Najafi A A and Akhavan Niaki S T 2010 Economic production quantity model with scrapped items and limited production capacity. Scientia Iranica-Transaction E: Industrial Engineering 17(1): 58–69

    MATH  Google Scholar 

  37. Taleizadeh A A, Cárdenas-Barrón L E, Biabani J and Nikousokhan R 2012 Multi products single machine EPQ model with immediate rework process. International Journal of Industrial Engineering Computations 3(2): 93–102

    Article  Google Scholar 

  38. Ouyang L Y, Chen L Y and Yang C T 2013 Impacts of collaborative investment and inspection policies on the integrated inventory model with defective items. Int. J. Prod. Res. 51(19): 5789–5802

    Article  Google Scholar 

  39. Taleizadeh A A, Jalali-Naini S G, Wee H M and Kuo T C 2013 An imperfect multi-product production system with rework. Scientia Iranica-Transaction E: Industrial Engineering. 20(3): 811–823

    Google Scholar 

  40. Taleizadeh A A, Cárdenas-Barrón L E and Mohammadi B 2014 A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. Int. J. Prod. Econ. 150: 9–27

    Article  Google Scholar 

  41. Jaber M Y, Zanoni S and Zavanella L E 2014 Economic order quantity models for imperfect items with buy and repair options. Int. J. Prod. Econ. 155: 126–131

    Article  Google Scholar 

  42. Taleizadeh A A, Noori-daryan M and Tavakkoli-Moghaddam R 2015 Pricing and ordering decisions in a supply chain with imperfect quality items and inspection under buyback of defective items. Int. J. Prod. Res. 53(15): 4553–4582

    Article  Google Scholar 

  43. Taleizadeh A A and Noori-Daryan M 2015 Pricing, Manufacturing and Inventory Policies for Raw Material in a Three-Level Supply Chain, International Journal of Systems Science 47(4): 919–931

    Article  MathSciNet  MATH  Google Scholar 

  44. Treviño-Garza G, Castillo-Villar K K and Cárdenas-Barrón L E 2015 Joint determination of the lot size and number of shipments for a family of integrated vendor–buyer systems considering defective products. Int. J. Syst. Sci. 46(9): 1705–1716

    Article  MATH  Google Scholar 

  45. Taleizadeh A A and Wee H M 2015 Manufacturing system with immediate rework and partial backordering. International Journal of Advanced Operations Management 7(1): 41–62

    Article  Google Scholar 

  46. Tai A H 2015 An EOQ model for imperfect quality items with multiple quality characteristic screening and shortage backordering. Eur. J. Indust. Eng. 9(2): 261–276

    Book  Google Scholar 

  47. Taleizadeh A A, Kalantari S S and Cárdenas-Barrón L E 2015b Determining optimal price, replenishment lot size and number of shipments for an EPQ model with rework and multiple shipments. J. Ind. Manag. Optim. 11(4): 1059–1071

    Article  MathSciNet  MATH  Google Scholar 

  48. Hsu L F and Hsu J T 2016 Economic production quantity (EPQ) models under an imperfect production process with shortages backordered. Int. J. Syst. Sci. 47(4): 852–867

    Article  MathSciNet  MATH  Google Scholar 

  49. Taleizadeh A A and Moshtagh M S 2019 A consignment stock scheme for closed loop supply chain with imperfect manufacturing processes, lost sales, and quality dependent return: Multi Levels Structure. Int. J. Prod. Econ.

  50. Stoer J and Bulirsch R 2013 Introduction to numerical analysis (Vol. 12). Springer Science & Business Media, Germany

    MATH  Google Scholar 

  51. Taleizadeh A A, Wee H M and Jolai F 2013 Revisiting fuzzy rough economic order quantity model for deteriorating items considering quantity discount and prepayment. Mathematical and Computer Modeling 57 (5-6): 1466–1479

    Article  MathSciNet  Google Scholar 

  52. Tat R, Taleizadeh A A and Esmaeili M 2015 Developing EOQ model with non-instantaneous deteriorating items in vendor-managed inventory (VMI) system. International Journal of Systems Science 46(7): 1257–1268

    Article  MATH  Google Scholar 

  53. Taleizadeh A A, Kalantary S S and Cárdenas-Barrón L E 2015 Determining optimal price, replenishment lot size and number of shipment for an EPQ model with rework and multiple shipments. Journal of Industrial and Management Optimization 11(4): 1059–1071

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata Allah Taleizadeh.

Appendix A

Appendix A

Proposition 1

Equal \( \left( {1 - x} \right)^{n} - \frac{{x^{n} }}{{\left( {\left( {1 -\uplambda} \right)\alpha - 1} \right)^{n} }} - \frac{{C_{b} }}{{C_{b} + C_{h} }} = 0 \) has a unique solution \( x^{*} \)on \( \left( {0,\frac{{\left( {\left( {1 -\uplambda} \right)\alpha - 1} \right)}}{{\left( {1 -\uplambda} \right)\alpha }}} \right) \).

Proof

Suppose that f(x) is a real function on [0,1] defined by:

$$ f\left( x \right) = \left( {1 - x} \right)^{n} - \frac{{x^{n} }}{{\left( {\left( {1 -\uplambda} \right)\alpha - 1} \right)^{n} }} - \frac{{C_{b} }}{{C_{b} + C_{h} }} $$
(a)

f(x) is continuous, strictly decreasing differentiable on the interval (0,1) because (notice that according to assumption 9, \( \left( {1 - \lambda } \right)\alpha - 1 > 0 \)):

$$ f^{\prime}\left( x \right) = - n\left( {1 - x} \right)^{n - 1} - \frac{{nx^{n - 1} }}{{\left( {\left( {1 -\uplambda} \right)\alpha - 1} \right)^{n} }} < 0 $$
(b)

Also, we have \( f\left( 0 \right) = \frac{{C_{h} }}{{C_{b} + C_{h} }} > 0 \) and \( f\left( {\frac{{\left( {\left( {1 -\uplambda} \right)\alpha - 1} \right)}}{{\left( {1 -\uplambda} \right)\alpha }}} \right) = - \frac{{C_{b} }}{{C_{b} + C_{h} }} < 0 \). So, using the intermediate value theory, a point \( x^{*} \) exists in the interval \( \left( {0,\frac{{\left( {\left( {1 -\uplambda} \right)\alpha - 1} \right)}}{{\left( {1 -\uplambda} \right)\alpha }}} \right) \), where \( y(x^{*} ) = 0 \). Finally, because of that the function is decreasing on (0,1), the point \( x^{*} \) is unique.

Proposition 2

The total cost function \( TC_{I} \left( {s,T} \right) \) is strictly convex.

Proof

Using the second order derivatives of \( TC_{I} \left( {s,T} \right) \) respect to decision variables, we have:

$$ \frac{{\partial^{2} TC_{I} \left( {s,T} \right)}}{{\partial s^{2} }} = \left( {C_{h} + C_{b} } \right)\left[ {\frac{{n\left( {s + rT} \right)^{n - 1} }}{{r^{n} T^{n} }} + \frac{{n\left( { - s} \right)^{n - 1} }}{{\left( {\left( {1 - \lambda } \right)\alpha - 1} \right)^{n} r^{n} T^{n} }}} \right] $$
(c)
$$ \frac{{\partial^{2} TC_{I} \left( {s,T} \right)}}{{\partial T^{2} }} = \left( {C_{h} + C_{b} } \right)\left[ {\frac{{ns^{2} \left( {s + rT} \right)^{n - 1} }}{{r^{n} T^{n + 2} }} + \frac{{n\left( { - s} \right)^{n + 1} }}{{\left( {\left( {1 - \lambda } \right)\alpha - 1} \right)^{n} r^{n} T^{n + 2} }}} \right] + \frac{{2C_{o} }}{{T^{3} }} $$
(d)
$$ \frac{{\partial^{2} TC_{I} \left( {s,T} \right)}}{\partial s\partial T} = \left( {C_{h} + C_{b} } \right)\left[ {\frac{{n\left( { - s} \right)\left( {s + rT} \right)^{n - 1} }}{{r^{n} T^{n + 1} }} + \frac{{n\left( { - s} \right)^{n} }}{{\left( {\left( {1 - \lambda } \right)\alpha - 1} \right)^{n} r^{n} T^{n + 1} }}} \right] $$
(f)

And the Hessian of the function \( TC_{I} \left( {s,T} \right) \) is given by:

$$ \begin{aligned} H\left( {s,T} \right) & = \left[ {\frac{{\partial^{2} TC_{I} \left( {s,T} \right)}}{{\partial s^{2} }}} \right]\left[ {\frac{{\partial^{2} TC_{I} \left( {s,T} \right)}}{{\partial T^{2} }}} \right] - \left[ {\frac{{\partial^{2} TC_{I} \left( {s,T} \right)}}{\partial s\partial T}} \right]^{2} \\ & = \left( {C_{h} + C_{b} } \right)\left[ {\frac{{n\left( {s + rT} \right)^{n - 1} }}{{r^{n} T^{n} }} + \frac{{n\left( { - s} \right)^{n - 1} }}{{\left( {\left( {1 - \lambda } \right)\alpha - 1} \right)^{n} r^{n} T^{n} }}} \right]\left[ {\frac{{2C_{o} }}{{T^{3} }}} \right] > 0 \\ \end{aligned} $$
(g)

Eqs. (c) to (g) are positive, because in the region \( \frac{{ - \left( {\left( {1 - \lambda } \right)\alpha - 1} \right)}}{{\left( {1 - \lambda } \right)\alpha }}rT \le s \le 0 \), we always have \( s + rT > 0 \). Therefore, the function \( TC_{I} \left( {s,T} \right) \) is strictly convex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarzfard, R., Makui, A., Tavakkoli-Moghaddam, R. et al. Optimization of imperfect economic manufacturing models with a power demand rate dependent production rate. Sādhanā 44, 206 (2019). https://doi.org/10.1007/s12046-019-1171-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-019-1171-4

Keywords

Navigation