Skip to main content
Log in

Dual flexible rotor system with active magnetic bearings for unbalance and coupling misalignment faults analysis

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Rotating machines are the backbone of the present industrial world. Early fault detection and conditioning of these machines are primary concern of the researchers associated in this field. There are various faults (assembly error, coupling misalignment, looseness, imbalance, rotor crack, etc.) that cause malfunction of rotating machinery. Imbalance is one of the oldest problem and still challenging to perfectly balance the rotor. Imbalance leads to another inherent fault, i.e., coupling misalignment, especially in dual rotor or rotor train system. Imbalance and misalignment cause excessive vibration in the system that tends to shatter failure of the critical components of rotating machinery. In this article, active magnetic bearings (AMBs) are utilized to suppress the excessive vibration generated due to imbalance and misalignment. To regulate the controlling current of AMB a proportional integral derivative (PID) feedback controller is employed. A quantification technique is suggested to evaluate the tuned AMB characteristics along with imbalance and coupling misalignment dynamic parameters. A finite element method (FEM) modelling with high-frequency reduction scheme is utilized to acquire reduced system equations of motion. There are two advantages of employing condensation scheme, first, it reduces the number of sensors required and second, only linear (practically measurable) degrees of freedom are present in equations of motion derived. A SIMULINK™ code is prepared to solve a reduced linear differential equation. The time series feedback signals (current and displacement) obtained are transformed into a frequency series utilizing Fast Fourier Transformation (FFT) and utilized in developed algorithm. To establish the accuracy and effectiveness of the methodology, the estimated parameters are evaluated under two different frequency bands against measurement and modelling error (5% variation in mass of the disc and bearing characteristic parameters).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Schweitzer G and Maslen E H 2009 Magnetic bearings: theory, design, and application to rotating machinery. Berlin: Springer

    Google Scholar 

  2. Tiwari R and Chougale A 2014 Identification of bearing dynamic parameters and unbalance states in a flexible rotor system fully levitated on active magnetic bearings. Mechatronics 24: 274–286

    Article  Google Scholar 

  3. Hili M A, Bouaziz S and Haddar M 2017 Stability analysis and dynamic behaviour of a flexible asymmetric rotor supported by active magnetic bearings. J. Theo. Appl. Mech. 55: 751–763

    Article  Google Scholar 

  4. Burrows C R, Sahinkaya M N and Clements S 1989 Active vibration control of flexible rotors: an experimental and theoretical study. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 422: 123–146

    Article  Google Scholar 

  5. Clark D J, Jansen M J and Montague G T 2004 An overview of magnetic bearing technology for gas turbine engines. NASA

  6. Amer Y A and Hegazy U H 2007 Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness. Chaos, Sol. Fractals 34: 1328–1345

    Article  Google Scholar 

  7. Kasarda M E, Marshall J and Prins R 2007 Active magnetic bearing based force measurement using the multi-point technique. Mech. Research Commun. 34: 44–53

    Article  Google Scholar 

  8. Arredondo I, Jugo J and Etxebarria V 2008 Modelling and control of a flexible rotor system with AMB-based sustentation. ISA Trans. 47: 101–112

    Article  Google Scholar 

  9. Bouaziz S, Messaoud N B, Mataar M, Fakhfakh T and Haddar M 2011 A theoretical model for analyzing the dynamic behavior of misaligned rotor with Active Magnetic Bearing. Mechatronics 21: 899–907

    Article  Google Scholar 

  10. Bouaziz S, Messaoud N B, Choley J Y, Maatar M and Haddar M 2013 Transient response of a rotor-AMBs system connected by a flexible mechanical coupling. Mechatronics 23: 573–580

    Article  Google Scholar 

  11. Chen S Y and Lin F J 2013 Decentralized PID neural network control for five degree-of-freedom active magnetic bearing. Eng. Appl. Artif. Intell. 26: 962–973

    Article  Google Scholar 

  12. Jiang K, Zhu C, Chen L and Qiao X 2015 Multi-DOF rotor model based measurement of stiffness and damping for active magnetic bearing using multi-frequency excitation. Mech. Syst. Signal. Proces. 60: 358–374

    Article  Google Scholar 

  13. Jin C, Xu Y, Zhou J and Cheng C 2016 Active magnetic bearing stiffness and damping identification from frequency characteristics of control system. Shock Vibr. 2016

  14. Zhou J, Di L, Cheng C, Xu Y and Lin Z 2016 A rotor unbalance response based approach to the identification of the closed-loop stiffness and damping coefficients of active magnetic bearings. Mech. Syst. Signal Process. 66: 665–678

    Article  Google Scholar 

  15. Chen Q, Liu G and Han B 2017 Unbalance vibration suppression for AMBs system using adaptive notch filter. Mech. Syst. Signal. Process. 93: 136–150

    Article  Google Scholar 

  16. Kuppa S K and Lal M 2017 Characteristic Parameter Estimation of AMB Supported Coupled Rotor System. In: Proc. ASME 2017 Gas Turbine India Conference 7–8 December, Bangalore, India pp. V002T05A010-V002T05A010

  17. Kuppa S K and Lal M 2018 Characteristic Parameters Estimation of Uncertainties Present in an Active Magnetic Bearing Integrated Flexible Rotor System Using Dynamic Reduction Technique. In: Inter. Conf. Rotor Dynamics, Springer Cham. 63: 234–248

  18. Spangler D, Prins R and Kasarda M, 2017 A System Identification Technique Using Bias Current Perturbation for the Determination of the Magnetic Axes of an Active Magnetic Bearing. In Actuators. Multidisciplinary Digital Publishing Institute. 6: 13

    Google Scholar 

  19. Xu Y, Zhou J, Di L and Zhao C 2017 Active magnetic bearings dynamic parameters identification from experimental rotor unbalance response. Mech. Syst. Signal. Process. 83: 228–240

    Article  Google Scholar 

  20. Bonfitto A, Castellanos Molina L, Tonoli A and Amati N 2018 Offset-Free Model Predictive Control for Active Magnetic Bearing Systems. In Actuators Multidisciplinary Digital Publishing Institute. 7: 46

    Google Scholar 

  21. Ebrahimi R, Ghayour M and Khanlo H M 2018 Nonlinear dynamic analysis and experimental verification of a magnetically supported flexible rotor system with auxiliary bearings. Mech. Mach. Theory 121: 545–562

    Article  Google Scholar 

  22. Li Q, Wang W, Weaver B and Shao X 2018 Active rotor dynamic stability control by use of a combined active magnetic bearing and hole pattern seal component for back-to-back centrifugal compressors. Mech. Mach. Theory 127: 1–12

    Article  Google Scholar 

  23. Lusty C, Bailey N Y and Keogh P S 2018 Control of Flexible Rotor Vibration with Flexibly Mounted Active Magnetic Bearings. In: Inter. Conf. Rotor Dynamics, Springer, Cham. 62: 65–73

  24. Lyu M, Liu T, Wang Z, Yan S, Jia X and Wang Y 2018 A control method of the rotor re-levitation for different orbit responses during touchdowns in active magnetic bearings. Mech. Syst. Signal. Process. 105: 241–260

    Article  Google Scholar 

  25. Xu Y, Zhou J, Lin Z and Jin C 2018 Identification of dynamic parameters of active magnetic bearings in a flexible rotor system considering residual unbalances. Mechatronics 49: 46–55

    Article  Google Scholar 

  26. Lal M and Tiwari R 2012 Multi-fault identification in simple rotor-bearing-coupling systems based on forced response measurements. Mech. Mach. Theory 51: 87–109

    Article  Google Scholar 

  27. Rao J S 2011 History of rotating machinery dynamics. Springer Science and Business Media 20

  28. Lal M and Tiwari R 2013 Quantification of Multiple Fault Parameters in Flexible Turbo-Generator Systems with Incomplete Rundown Data. Mech. Syst. Signal. Process. 41: 546–563

    Article  Google Scholar 

  29. Millsaps K T and Vejvoda C E 1996 Origin of split resonance and backward whirl in a simple rotor. In: ASME 1996 Inter. Gas Turbine and Aeroengine Congress and Exhibition, pp. V003T07A002-V003T07A002

  30. Lal M and Tiwari R 2018 Experimental identification of shaft misalignment in a turbo-generator system. Sadhana (Acad. Proc. Eng. Sci.) 43: 80

  31. Tiwari R 2017 Rotor systems: analysis and identification. CRC Press, Boca Raton

  32. Paz M 1984 Dynamic condensation. AIAA J. 22: 724–727

    Article  Google Scholar 

  33. Friswell M and Mottershead J E 2013 Finite element model updating in structural dynamics. Springer Science and Business Media 38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Lal.

Appendix A

Appendix A

The peak (fr+1, 1 and −fr) acquired from figure 9, are utilized to develop the algorithm as,

$$ \varvec{A}(\omega_{\varvec{i}} )\chi = \varvec{B}(\omega_{\varvec{i}} ) $$
(A.1)

with,

$$ \varvec{A}(\omega_{\varvec{i}} ) = [\varvec{A}_{\varvec{U}} (\omega_{\varvec{i}} ) { }\varvec{A}_{{\varvec{AMB}}} (\omega_{\varvec{i}} ) { }\varvec{A}_{\varvec{C}} (\omega_{\varvec{i}} )] $$
(A.2)

Regression matrix due to residual unbalance \( \varvec{A}_{\varvec{U}} (\omega_{\varvec{i}} ) { } \)

$$ \varvec{A}_{\varvec{U}} (\omega_{\varvec{i}} ) { = }\left[ {\begin{array}{*{20}c} { - \varvec{m}^{{\varvec{d}_{1} }} \omega^{2} \lambda_{{\varvec{U}_{1} }} } & 0 & { - \varvec{m}^{{\varvec{d}_{2} }} \omega^{2} \lambda_{{\varvec{U}_{2} }} } & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & { - \varvec{m}^{{\varvec{d}_{1} }} \omega^{2} \lambda_{{\varvec{U}_{1} }} } & 0 & { - \varvec{m}^{{\varvec{d}_{2} }} \omega^{2} \lambda_{{\varvec{U}_{2} }} } \\ \vdots & \vdots & \vdots & \vdots \\ \end{array} } \right] $$

Regression matrix due to active magnetic bearing \( A_{AMB} (\omega_{i} ) { } \)

$$ \varvec{A}_{{\varvec{AMB}}} (\omega_{\varvec{i}} ) { = }\left[ {\begin{array}{*{20}c} {\varvec{A}_{{\varvec{AMB}_{\varvec{x}} }} } & {\varvec{A}_{{\varvec{AMB}_{\varvec{y}} }} } \\ \end{array} } \right] $$
(A.3)
$$ \begin{aligned} A_{{AMB_{x} }} \, & { = }\left[ {\begin{array}{*{20}c} {re(\bar{X}_{i}^\circ \lambda_{{AMB_{x1} }} )} & {re(\bar{I}_{i} \lambda_{{AMB_{x1} }} )} & {re(\bar{X}_{i}^\circ \lambda_{{AMB_{x2} }} )} & {re(\bar{X}_{i} \lambda_{{AMB_{x2} }} )} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \end{array} } \right] \\ A_{{AMB_{y} }} \, & { = }\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ {im(\bar{X}_{i}^\circ \lambda_{{AMB_{y1} }} )} & {im(\bar{I}_{i} \lambda_{{AMB_{y1} }} )} & {im(\bar{X}_{i}^\circ \lambda_{{AMB_{y2} }} )} & {im(\bar{X}_{i} \lambda_{{AMB_{y2} }} )} \\ \vdots & \vdots & \vdots & \vdots \\ \end{array} } \right] \\ \end{aligned} $$

Regression matrix due to coupling stiffness and damping \( A_{C} (\omega_{i} ) { } \)

$$ A_{C} (\omega_{i} ) { } = [\begin{array}{*{20}c} {A_{{C_{k} }} (\omega_{i} )} & {A_{{C_{c} }} (\omega_{i} )} \\ \end{array} ] $$
(A.4)
$$ \begin{aligned} A_{{c_{x} }} & { = }\left[ {\begin{array}{*{20}c} {re(\bar{X}_{i} \lambda_{xx}^{{c_{k} }} )} & {re(\bar{X}_{i} \lambda_{xy}^{{c_{k} }} )} & {re(\bar{X}_{i} \lambda_{yx}^{{c_{k} }} )} & {re(\bar{X}_{i} \lambda_{yy}^{{c_{k} }} )} & {re(\bar{X}_{i} \lambda_{{\varphi_{x} \varphi_{x} }}^{{c_{k} }} )} & {re(\bar{X}_{i} \lambda_{{\varphi_{y} \varphi_{y} }}^{{c_{k} }} )} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ {im(\bar{X}_{i} \lambda_{xx}^{{c_{k} }} )} & {im(\bar{X}_{i} \lambda_{xx}^{{c_{k} }} )} & {im(\bar{X}_{i} \lambda_{yx}^{{c_{k} }} )} & {im(\bar{X}_{i} \lambda_{yy}^{{c_{k} }} )} & {im(\bar{X}_{i} \lambda_{{\varphi_{x} \varphi_{x} }}^{{c_{k} }} )} & {im(\bar{X}_{i} \lambda_{{\varphi_{y} \varphi_{y} }}^{{c_{k} }} )} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array} } \right] \\ A_{{C_{c} }} & = \left[ {\begin{array}{*{20}c} {im\left( {\bar{X}_{i} \lambda_{xx}^{{c_{c} }} } \right)} & {im\left( {\bar{X}_{i} \lambda_{xy}^{{c_{c} }} } \right)} & {im\left( {\bar{X}_{i} \lambda_{yx}^{{c_{c} }} } \right)} & {im\left( {\bar{X}_{i} \lambda_{yx}^{{c_{c} }} } \right)} \\ \vdots & \vdots & \vdots & \vdots \\ {re\left( {\bar{X}_{i} \lambda_{xx}^{c} } \right)} & {re\left( {\bar{X}_{i} \lambda_{xy}^{{c_{c} }} } \right)} & {re\left( {\bar{X}_{i} \lambda_{yx}^{{c_{c} }} } \right)} & {re\left( {\bar{X}_{i} \lambda_{yy}^{{c_{c} }} } \right)} \\ \vdots & \vdots & \vdots & \vdots \\ \end{array} } \right] \\ \end{aligned} $$
$$ B(\omega_{i} ) = \left[ {\begin{array}{*{20}c} {\omega^{2} M^{H(D + S)} re\left( {\bar{X}_{i} } \right) - K^{H(B + S)} re\left( {\bar{\eta }_{i} } \right) + \omega C^{H(B + S)} im\left( {\bar{\eta }_{i} } \right) + \omega^{2} G^{H(D)} im\left( {\bar{\eta }_{i} } \right)} \\ \vdots \\ {} \\ {\omega^{2} M^{H(D + S)} im\left( {\bar{X}_{i} } \right) - K^{H(B + S)} im\left( {\bar{\eta }_{i} } \right) + \omega C^{H(B + S)} re\left( {\bar{\eta }_{i} } \right) + \omega^{2} G^{H(D)} re\left( {\bar{\eta }_{i} } \right)} \\ \vdots \\ {} \\ \end{array} } \right] $$
(A.5)

Here \( \bar{X}_{i} \) and \( \bar{I}_{i} \) (i = fr+1, 0, −fr) are the displacement and current signals in frequency domain. \( \lambda_{{U_{i} }} \), \( \lambda_{{AMB_{xi} }} , \, \lambda_{{AMB_{yi} }} , \, {}^{o}\lambda_{{AMB_{xi} }} , \, {}^{o}\lambda_{{AMB_{yi} }} \)(i = 1, 2) and \( \lambda_{xx}^{{C_{k} }} , \, \lambda_{xy}^{{C_{k} }} , \, \lambda_{yx}^{{C_{k} }} , \, \lambda_{yy}^{{C_{k} }} , \, \lambda_{{\varphi_{x} \varphi_{x} }}^{{C_{k} }} , \, \lambda_{{\varphi_{y} \varphi_{y} }}^{{C_{k} }} ,\lambda_{xx}^{{C_{c} }} , \, \lambda_{xy}^{{C_{c} }} , \, \lambda_{yx}^{{C_{c} }} , \, \lambda_{yy}^{{C_{c} }} \) are the flag location corresponding to unbalance, AMB (displacement and current) and coupling stiffness and damping, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuppa, S.K., Lal, M. Dual flexible rotor system with active magnetic bearings for unbalance and coupling misalignment faults analysis. Sādhanā 44, 188 (2019). https://doi.org/10.1007/s12046-019-1168-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-019-1168-z

Keywords

Navigation