Skip to main content
Log in

A single variable shear deformable nonlocal theory for transversely loaded micro- and nano-scale rectangular beams

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

In this paper, a simple single variable shear deformable nonlocal theory for bending of micro- and nano-scale rectangular beams is presented. To incorporate small size effects, the theory uses Eringen’s nonlocal differential constitutive relations. The theory has only one fourth-order governing differential equation involving a single unknown variable. The governing equation and the expressions for the bending moment and shear force of the present theory are strikingly similar to those of nonlocal Euler-Bernoulli Beam Theory (EBT) formulated based on Eringen’s nonlocal elasticity theory. The theory assumes that the axial and lateral displacements have bending and shear components such that the bending components do not contribute towards shear force, and the shear components do not contribute towards bending moment. Also, the chosen displacement functions of the theory give rise to a realistic parabolic transverse shear stress distribution across the beam cross-section. Efficacy of the proposed theory is demonstrated through bending of simply supported, cantilever and clamped-clamped micro- and nano-scale beams of rectangular cross-section. The numerical results obtained by using the present theory are compared with those predicted by other nonlocal first-order and higher-order shear deformation beam theories. The results obtained are quite accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Eringen A C 1972 Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1): 1–16

    Article  MathSciNet  MATH  Google Scholar 

  2. Eringen A C and Edelen D G B 1972 On nonlocal elasticity. Int. J. Eng. Sci. 10(3): 233–248

    Article  MathSciNet  MATH  Google Scholar 

  3. Eringen A C 1972 Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5): 425–435

    Article  MATH  Google Scholar 

  4. Eringen A C 1983 On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9): 4703–4710

    Article  Google Scholar 

  5. Eringen A C 2002 Nonlocal linear elasticity. Nonlocal continuum field theories. New York: USA, Springer-Verlag New York, Inc. pp 73–77

    Google Scholar 

  6. Fleck N A, Muller G M, Ashby M F and Hutchinson J W 1994 Strain gradient plasticity: theory and experiment. Acta. Metall. Mater. 42(2): 475–487

    Article  Google Scholar 

  7. Toupin R A 1962 Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1): 385–414

    Article  MathSciNet  MATH  Google Scholar 

  8. Mindlin R D and Tiersten H F 1962 Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1): 415–448

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang F, Chong A C M, Lam D C C and Tong P 2002 Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10): 2731–2743

    Article  MATH  Google Scholar 

  10. Wang C M, Reddy J N and Lee K H 2000 Bending of beams. Shear deformable beams and plates: Relationships with classical solutions. Elsevier Science Ltd, Oxford, UK. pp. 11–23

  11. Levinson M 1981a A new rectangular beam theory. J. Sound Vibr. 74(1): 81–87

    Article  MATH  Google Scholar 

  12. Levinson M 1981b Further results of a new beam theory. J. Sound Vibr. 77(3): 440–444

    Article  MATH  Google Scholar 

  13. Civalek O and Demir C 2011 Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory. Appl. Math. Model. 35(5): 2053–2067

    Article  MathSciNet  MATH  Google Scholar 

  14. Civalek O, Demir C and Akgoz B 2010 Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Math. Comput. Appl. 15(2): 289–298

    MathSciNet  MATH  Google Scholar 

  15. Ghannadpour S A M, Mohammadi B and Fazilati J 2013 Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method. Compos. Struct. 96: 584–589

    Article  Google Scholar 

  16. Barretta R and Sciarra F M D 2015 Analogies between nonlocal and local Bernoulli-Euler nanobeams. Arch. Appl. Mech. 85(1): 89–99

    Article  MATH  Google Scholar 

  17. Wang C M, Kitipornchai S, Lim C W and Eisenberger M 2008 Beam bending solutions based on nonlocal Timoshenko beam theory. J. Eng. Mech. 134(6): 475–481

    Article  Google Scholar 

  18. Wang C M, Zhang Y Y and He X Q 2007 Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10): 105401(1–9)

  19. Reddy J N 2007 Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2): 288–307

    Article  MATH  Google Scholar 

  20. Aydogdu M 2009 A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E 41(9): 1651–1655

    Article  Google Scholar 

  21. Shimpi R P, Shetty R A and Guha A 2016 A simple single variable shear deformation theory for a rectangular beam. Proc. IMechE Part C: J. Mechanical Engineering Science 231(24): 4576–4591

    Article  Google Scholar 

  22. Niu J C, Lim C W and Leung A Y T 2009 Third-order non-local beam theories for the analysis of symmetrical nanobeams. Proc. IMechE Part C: J. Mechanical Engineering Science 223(10): 2451–2463

    Google Scholar 

  23. Thai H T 2012 A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52: 56–64

    Article  MathSciNet  Google Scholar 

  24. Thai H T and Vo T P 2012 A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 54: 58–66

    Article  MathSciNet  Google Scholar 

  25. Xu M 2006 Free transverse vibrations of nano-to-micron scale beams. Proc. R. Soc. A 462(2074): 2977–2995

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruiz J A, Loya J and Saez J F 2012 Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos. Struct. 94(9): 2990–3001

    Article  Google Scholar 

  27. Ke L L, Xiang Y, Yang J and Kitiporncahi S 2009 Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 47(2): 409–417

    Article  Google Scholar 

  28. Chakraverty S and Behera L 2015 Free vibration of non-uniform nanobeams using Rayleigh-Ritz method. Physica E 67: 38–46

    Article  Google Scholar 

  29. Shimpi R P 2002 Refined plate theory and its variants. AIAA J. 40(1): 137–146

    Article  Google Scholar 

  30. Shimpi R P and Patel H G 2006 Free vibrations of plate using two variable refined plate theory. J. Sound Vib. 296(4): 979–999

    Article  MATH  Google Scholar 

  31. Shimpi R P and Patel H G 2006 A two variable refined plate theory for orthotropic plate analysis. Int. J. Solids Struct. 43(22): 6783–6799

    Article  MATH  Google Scholar 

  32. Kim S E, Thai H T and Lee J 2009 A two variable refined plate theory for laminated composite plates. Compos. Struct. 89(2): 197–205

    Article  Google Scholar 

  33. Thai H T and Kim S E 2010 Free vibration of laminated composite plates using two variable refined plate theory. Int. J. Mech. Sci. 52(4): 626–633

    Article  Google Scholar 

  34. Peddieson J, Buchanan G R and McNitt R P 2003 Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3): 305–312

    Article  Google Scholar 

  35. Timoshenko S P and Goodier J N 1970 Two-dimensional problems in rectangular coordinates. Theory of Elasticity. McGraw-Hill Book Company, New York, USA. pp. 45–46

    Google Scholar 

  36. Levinson M 1980 An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun. 7(6): 343–350

    Article  MATH  Google Scholar 

  37. Groh R P and Weaver P M 2015 Static inconsistencies in certain axiomatic higher-order shear deformation theories for beams, plates and shells. Compos. Struct. 120: 231–245

    Article  Google Scholar 

  38. Reddy J N and Pang S D 2008 Nonlocal continuum theories for beams for the analysis of carbon nanotubes. J. Appl. Phys. 103(2): 023511(1–16)

  39. Ding H J, Huang D J and Wang H M 2005 Analytical solution for fixed-end beam subjected to uniform load. J. Zhejiang Univ. SCI. 6A: 779–783

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshchandra P Shimpi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimpi, R.P., Shetty, R.A. & Guha, A. A single variable shear deformable nonlocal theory for transversely loaded micro- and nano-scale rectangular beams. Sādhanā 43, 73 (2018). https://doi.org/10.1007/s12046-018-0852-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0852-8

Keywords

Navigation