Skip to main content
Log in

Magnetohydrodynamic mixed convection flow in vertical concentric annuli with time periodic boundary condition: Steady periodic regime

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This work reports an analytical solution for fully developed mixed convection flow of viscous, incompressible, electrically conducting fluid in vertical concentric annuli under the influence of a transverse magnetic field, where the outer surface of inner cylinder is heated sinusoidally and the inner surface of outer cylinder is kept at a constant temperature. The analysis is carried out for fully developed parallel flow and steady-periodic regime. The governing dimensionless momentum and energy equations are separated into steady and periodic parts and solved analytically. Closed form solutions are expressed in terms of modified Bessel function of first and second kind. The influence of each governing parameters such as magnetic field parameter, Prandtl number and the dimensionless frequency of heating on flow formation and thermal behaviour are discussed with the aid of graphs. During the course of investigation, it is found that the oscillation amplitude of the friction factor is maximized at a resonance frequency near the surface of the concentric annuli where there is periodic heating. Furthermore, increasing transverse magnetic field decreases the oscillation amplitude of the friction factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Hartmaan J and Lazarus F 1937 Experimental investigations on the flow of mercury in a homogeneous magnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd 15(6): 1–45

    Google Scholar 

  2. Shercliff J A 1953 Steady motion of conductingfluids in pipes under the action transverse magnetic field. Math. Proc. Camb. Philos. Soc. 49(1): 136–144

    Article  MathSciNet  MATH  Google Scholar 

  3. Shercliff J A 1962 Magnetohydronamics pipe flow Part 2, high Hartmaan number. J. Fluid Mech. 13(4): 513–518

    Article  MathSciNet  MATH  Google Scholar 

  4. Hunt J C R 1965 Magnetohydrodynamics flow in rectangular ducts. J. Fluid Mech. 21(4): 577–590

    Article  MathSciNet  MATH  Google Scholar 

  5. Tezer-Sezgin M 1994 Boundary element methodsolutions of MHD flow in a rectangular duct. Int. J. Numer. Methods Fluids 18(10): 937–952

    Article  MathSciNet  MATH  Google Scholar 

  6. Hosseinzadeh H, Dehghan M and Mirzaeib D 2012 The boundary elements method for Magneto-Hydrodynamics (MHD) Channel Flows at High Hartmaan Numbers, AMS classification: 65N38

  7. Oreper G M and Szekely J 1983 The effect of an external im-posed magnetic field on buoyancy driven flow in a rectan-gular cavity. J. Cryst Growth 64: 505–515

    Article  Google Scholar 

  8. Alboussiere T, Garandet J P, Moreau R 1983 Buoyancy-driven convection with a uniform magnetic field, Part 1: Asymptotic analysis. J. Fluid Mech. 253: 545–563

    Article  MATH  Google Scholar 

  9. Garandet J P, Alboussiere T and Moreau R 1992 Buoy-ancy driven convection in a rectangular enclosure with a transverse magnetic field. Int. Commun. Heat Mass Transf. 35: 741–749

    Article  MATH  Google Scholar 

  10. Ghosh S K 1993 Unsteady hydromagnetic flow in a rotat-ing channel with oscillating pressure gradient. J. Phys. Soc. Jpn 62(11): 3893–3903

    Article  Google Scholar 

  11. Sheikholeslamia M, Gorji-Bandpy M, Ganji D D, Rana P and Soheil Soleimani 2014 Magnetohydrodynamic free convection of Al2O3–water nanofluid considering thermophoresis and Brownian motion effects. Comput. Fluid 94: 147–60

    Article  Google Scholar 

  12. Khan I and Ellahi R 2008 Some unsteady MHD flows of a second grade fluid through porous medium. J. Porous Media (ISI Indexed, I.F 0.684), 11(4): 389–400

  13. Farhad A, Norzieha M, SSharidan S, Khan I and Samiuthaq 2012a On hydromagnetic rotating flow in a porous medium with slip condition and hall current. Int. J. Phys. Sci. 7(10): 1540–1548

    Article  Google Scholar 

  14. Farhad Ali, Ilyas Khan, Samiulhaq, Norzieha Mustapha and Sharidan Shafie 2012b Unsteady magnetohydrodynamic oscillatory flow of viscoelastic fluids in a porous channel with heat and mass transfer. J. Phys. Soc. Jpn 81: 064402

    Article  Google Scholar 

  15. Basant K Jha, Babatunde Aina and A J Ajiya 2015 Role of suction/injection on MHD natural convection flow in a vertical micro-channel. Int. J. Energy Technol. 7(2): 30–39

    Google Scholar 

  16. Basant K Jha, Babatunde Aina and Sani Isa 2015a MHD natural convection flow in a vertical micro-concentric-annuli in the presence of radial magnetic field: An exact solution. J. Ain Shams Eng. http://dx.doi.org/10.1016/j.asej.2015.07.010

    Google Scholar 

  17. Basant K Jha, Babatunde Aina and Sani Isa 2015b Fully developed MHD natural convection flow in a vertical annular microchannel: An exact solution. J. King Saud Univ. (Sci.) 27: 253–259

    Article  Google Scholar 

  18. Basant K Jha, Babatunde Aina and Ajiya A J 2014 MHD natural convection flow in a vertical parallel plate microchannel. Ain Shams Eng. J. 6: 289–295

    Article  Google Scholar 

  19. Basant K Jha and Babatunde Aina 2015 MHD mixed convection flow in a vertical microannulus: An exact solution. Int. J. Fluid Mech. Res. 42(6): 537–552

    Article  Google Scholar 

  20. Sparrow E M and Gregg J L 1960 Newly quasi-steady free-convection heat transfer in gases. J. Heat Mass Transf. Trans. ASME Ser. 82: 258–260

    Article  Google Scholar 

  21. Chung P M and Anderson A D 1961 Unsteady laminar free convection. ASME J. Heat Mass Transf. 83: 473–478

    Article  Google Scholar 

  22. Yang J W, Scaccia C and Goodman J 1974 Laminar natural convection about vertical plates with oscillatory surface temperature. Trans. ASME J. Heat Transf. 96: 9–14

    Article  Google Scholar 

  23. Nanda R J and Sharma V P 1963 Free convection laminar boundary layer in oscillatory flow. J. FluidMech. 15: 419–428

    Article  MATH  Google Scholar 

  24. Bar-Cohen A and Rohsenow W M 1984 Thermally optimum spacing of vertical natural convection cooled parallel plates. ASME J. Heat Transf. 106: 116–123

    Article  Google Scholar 

  25. Wang C Y 1988 Free convection between vertical plates with periodic heat input. ASME J. Heat Transf. 110: 508–511

    Article  Google Scholar 

  26. Lage J L and Bejan A 1993 The resonance of natural convection in an enclosure heated periodically from the side. Int. J. Heat Mass Transf. 36: 2027–2038

    Article  MATH  Google Scholar 

  27. Antohe B V and Lage J L 1996 Amplitude effect on convection induced by time periodic boundary conditions. Int. J. Heat Mass Transf. 39: 1121–1133

    Article  Google Scholar 

  28. Kwak H S, Kvwahara J M, Hyun J M 1998 Resonant enhancement of natural convection heat transfer in a square enclosure. Int. J. Heat Mass Transf. 41: 2837–2846

    Article  MATH  Google Scholar 

  29. Barletta A and Zanchini E 2002 Time-periodic laminar mixed convection in an inclined channel. Int. J. Heat Mass Transf. 46: 551–563

    Article  MATH  Google Scholar 

  30. Barletta A and Rossi di Schio E 2004 Mixed convection flow in a vertical circular duct with time-periodic boundary conditions: Steady-periodic regime. Int. J. Heat Mass Transf. 47: 3187–3195

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babatunde Aina.

Appendix

Appendix

$$ \begin{aligned} & Z_{1} = K_{0} \left( {D_{1} } \right)I_{0} \left( {D_{1} d} \right) - K_{0} \left( {D_{1} d} \right)I_{0} \left( {D_{1} } \right),\quad Z_{2} = \frac{{\left[ {I_{0} \left( {D_{1} } \right) - I_{0} \left( {D_{1} d} \right)} \right]}}{{Z_{1} M^{2} }},\quad Z_{3} = \frac{{\left[ {K_{0} \left( {D_{1} d} \right) - K_{0} \left( {D_{1} } \right)} \right]}}{{Z_{1} M^{2} }}, \\ & Z_{4} = \frac{{\left[ {Z_{3} \left( {dI_{1} \left( {D_{1} d} \right) - I_{1} \left( {D_{1} } \right)} \right) - Z_{2} \left( {dK_{1} \left( {D_{1} d} \right) - K_{1} \left( {D_{1} } \right)} \right)} \right]}}{{D_{1} }},\quad Z_{5} = K_{0} \left( {D_{2} d} \right)I_{0} \left( {D_{2} } \right) - K_{0} \left( {D_{2} } \right)I_{0} \left( {D_{2} d} \right), \\ & Z_{6} = K_{0} \left( {D_{3} } \right)I_{0} \left( {D_{3} d} \right) - K_{0} \left( {D_{3} d} \right)I_{0} \left( {D_{3} } \right),\quad Z_{7} = \frac{{\left[ {I_{0} \left( {D_{3} } \right) - I_{0} \left( {D_{3} d} \right)} \right]}}{{Z_{6} i\Omega }},\quad Z_{8} = \frac{{I_{0} \left( {D_{3} } \right)}}{{\left[ {D_{3}^{2} - D_{2}^{2} } \right]Z_{6} }}, \\ & Z_{9} = \frac{{\left[ {K_{0} \left( {D_{3} d} \right) - K_{0} \left( {D_{3} } \right)} \right]}}{{Z_{6} i\Omega }},\quad Z_{10} = \frac{{K_{0} \left( {D_{3} } \right)}}{{\left[ {D_{2}^{2} - D_{3}^{2} } \right]Z_{6} }},\quad Z_{11} = \frac{{\left[ {dI_{1} \left( {D_{3} d} \right) - I_{1} \left( {D_{3} } \right)} \right]}}{{D_{3} }}, \\ & Z_{12} = \frac{{\left[ {dK_{1} \left( {D_{3} d} \right) - K_{1} \left( {D_{3} } \right)} \right]}}{{D_{3} }}\quad Z_{13} = \frac{{C_{3} }}{{D_{2} }}\left[ {dI_{1} \left( {D_{2} d} \right) - I_{1} \left( {D_{2} } \right)} \right],\quad Z_{14} = \frac{{C_{4} }}{{D_{2} }}\left[ {dK_{1} \left( {D_{2} d} \right) - K_{1} \left( {D_{2} } \right)} \right], \\ & Z_{15} = \frac{1}{{\left[ {D_{3}^{2} - D_{2}^{2} } \right]}},\quad Z_{16} = Z_{15} \left[ {Z_{13} - Z_{14} } \right],\quad \\ & C_{2} = \lambda_{a} Z_{2} ,\quad C_{3} = - \frac{{K_{0} \left( {D_{2} } \right)}}{{Z_{5} }},\quad C_{4} = \frac{{I_{0} \left( {D_{2} } \right)}}{{Z_{5} }}, \\ & C_{5} = Z_{9} \lambda_{b} + Z_{10} ,\quad C_{6} = Z_{7} \lambda_{b} + Z_{8}. \\ \end{aligned} $$
\( a \) :

Radius of the inner cylinder

\( A(t) \) :

Function of time

\( B_{0} \) :

Constant magnetic flux density

\( b \) :

Radius of the outer cylinder

\( d \) :

Radius ratio

\( f \) :

Fanning friction factor

\( g \) :

Gravitational acceleration

\( Gr \) :

Grashof number

\( i \) :

Imaginary unit

\( I_{n} \) :

Modified Bessel function of first kind and order \( n \)

\( K_{n} \) :

Modified Bessel function of second kind and order \( n \)

\( k \) :

Thermal conductivity

\( n \) :

Integer number

\( M \) :

Transverse magnetic field

p :

Pressure

\( P \) :

Difference between the pressure and the hydrostatic pressure

\( \Pr \) :

Prandtl number

\( R \) :

Radial coordinate

\( \text{Re} \) :

Reynolds number

\( {\Re }\text{e} \) :

Real part of a complex number

t :

Time

T :

Temperature

\( T_{0} \) :

Mean temperature in concentric annuli defined in Eq. (5)

\( T_{1} \) :

Mean temperature of the outer surface of inner cylinder

u :

Dimensionless velocity

\( u^{*} \) :

Dimensionless complex-valued function

\( u_{a}^{*} ,u_{b}^{*} \) :

Dimensionless complex-valued function

\( U \) :

Fluid velocity

\( X \) :

Longitudinal coordinate in vertical direction

\( \alpha \) :

Thermal diffusivity

\( \beta \) :

Volumetric coefficient of thermal expansion

\( \Delta T \) :

Amplitude of the temperature oscillations at the outer surface of inner cylinder

\( \lambda \) :

Dimensionless parameter defined in Eq. (10)

\( \lambda^{*} \) :

Dimensionless complex-valued function defined in Eq. (18)

\( \lambda_{a}^{*} ,\lambda_{b}^{*} \) :

Dimensionless complex-valued function defined in Eq. (23)

\( \eta \) :

Dimensionless time

\( \theta \) :

Dimensionless temperature

\( \theta_{a}^{*} ,\theta_{b}^{*} \) :

Dimensionless complex-valued function defined in Eq. (23)

\( \mu \) :

Dynamic viscosity

\( \nu \) :

Kinematic viscosity

\( \Phi \) :

Dimensionless heat flux

\( \Phi _{a}^{*} ,\Phi _{b}^{*} \) :

Dimensionless complex-valued function

\( \rho \) :

Mass density

\( \rho_{0} \) :

Mass density for \( T = T_{0} \)

\( \omega \) :

Frequency of the temperature oscillation

\( \Omega \) :

Dimensionless frequency

\( \sigma \) :

Electrical conductivity of the fluid

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, B.K., Aina, B. Magnetohydrodynamic mixed convection flow in vertical concentric annuli with time periodic boundary condition: Steady periodic regime. Sādhanā 41, 923–932 (2016). https://doi.org/10.1007/s12046-016-0522-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0522-7

Keywords

Navigation