Skip to main content
Log in

System identification application using Hammerstein model

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Generally, memoryless polynomial nonlinear model for nonlinear part and finite impulse response (FIR) model or infinite impulse response model for linear part are preferred in Hammerstein models in literature. In this paper, system identification applications of Hammerstein model that is cascade of nonlinear second order volterra and linear FIR model are studied. Recursive least square algorithm is used to identify the proposed Hammerstein model parameters. Furthermore, the results are compared to identify the success of proposed Hammerstein model and different types of models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ding F, Wang Y and Ding J 2015 Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model. Digital Signal Process. 37: 100–108, doi:10.1016/j.dsp.2014.10.005

    Article  Google Scholar 

  2. Ding F, Liu X P and Liu G 2011 Identification methods for Hammerstein nonlinear systems. Digital Signal Process. 21(2): 215–238

    Article  Google Scholar 

  3. Erçin Ö and Çoban R 2012 Identification of linear dynamic systems using the artificial bee colony algorithm. Turk. J. Electr. Eng. Comput. Sci. 20(1): 1175–1188

    Google Scholar 

  4. Hizir N B, Phan M Q, Betti R and Longman R W 2012 Identification of discrete-time bilinear systems through equivalent linear models. Nonlinear Dyn. 69(4): 2065–2078

    Article  MathSciNet  Google Scholar 

  5. Hong X, Mitchell R J, Chen S, Harris C J, Li K and Irwin G W 2008 Model selection approaches for non-linear system identification: A review. Int. J. Syst. Sci. 39(10): 925–946

    Article  MathSciNet  MATH  Google Scholar 

  6. Manohar C S and Roy D 2006 Monte Carlo filters for identification of nonlinear structural dynamical systems. Sadhana Acad. Proc. Eng. Sci. 31(4): 399–427

    MathSciNet  MATH  Google Scholar 

  7. Naitali A and Giri F 2015 Wiener–Hammerstein system identification an evolutionary approach. Int. J. Syst. Sci. 47(1): 45–61

    Article  MathSciNet  MATH  Google Scholar 

  8. Özer Ş and Zorlu H 2011 Identification of bilinear systems using differential evolution algorithm. Sadhana Acad. Proc. Eng. Sci. 36(3): 281–292

    MathSciNet  MATH  Google Scholar 

  9. Rahrooh A and Shepard S 2009 Identification of nonlinear systems using NARMAX model. Nonlinear Anal. 71(12): 1198–1202

    Article  MATH  Google Scholar 

  10. Schweickhardt T and Allgöwer F 2009 On system gains, nonlinearity measures, and linear models for nonlinear systems. IEEE Trans. Autom. Control 54(1): 62–78

    Article  MathSciNet  Google Scholar 

  11. Özer Ş and Zorlu H 2012 Chaotic time series prediction using the nonlinear PAR systems. J. Faculty Eng. Architecture Gazi Univ. 27(2): 323–331

    Google Scholar 

  12. Bao C, Hao H and Li Z X 2013 Integrated ARMA model method for damage detection of subsea pipeline system. Eng. Struct. 48: 176–192, doi:10.1016/j.engstruct.2012.09.033

    Article  Google Scholar 

  13. Caillec J M L 2008 Hypothesis testing for nonlinearity detection based on an MA model. IEEE Trans. Signal Process. 56(2): 816–821

    Article  MathSciNet  Google Scholar 

  14. Coelho L D S and Pessoa M W 2009 Nonlinear model identification of an experimental ball-and-tube system using a genetic programming approach. Mech. Syst. Signal Process. 23(5): 1434–1446

    Article  Google Scholar 

  15. Diniz P S R 2008 Adaptive filtering algorithms and practical implemantations, Springer Verlag, USA

    Book  MATH  Google Scholar 

  16. Maachou A, Malti R, Melchior P, Battaglia J L, Oustaloup A and Hay B 2014 Nonlinear thermal system identification using fractional Volterra series. Control Eng. Practice 29: 50–60, doi:10.1016/j.conengprac.2014.02.023

    Article  Google Scholar 

  17. Schmidt C A, Biagiola S I, Cousseau J E and Figueroa J L 2014 Volterra-type models for nonlinear systems identification. Appl. Math. Modell. 38(9–10): 2414–2421

    Article  MathSciNet  Google Scholar 

  18. Wang Y J and Ding F 2016 Iterative estimation for a nonlinear IIR filter with moving average noise by means of the data filtering technique. IMA J. Math. Control Inform. doi:10.1093/imamci/dnv067

    Google Scholar 

  19. Zorlu H 2011 Identification of nonlinear systems with soft computing techniques. PhD dissertation, Erciyes University, Graduate School of Natural and Applied Science, Turkey

  20. Cui M, Liu H, Li Z, Tang Y and Guan X 2014 Identification of Hammerstein model using functional link artificial neural network. Neuro Comput. 142: 419–428, doi:10.1016/j.neucom.2014.03.051

    Google Scholar 

  21. Ding F, Ma J and Xiao Y 2013 Newton iterative identification for a class of output nonlinear systems with moving average noises. Nonlinear Dyn. 74(1): 21–30

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding F and Chen T 2005 Identification of Hammerstein nonlinear ARMAX systems. Automatica 41(9): 1479–1489

    Article  MathSciNet  MATH  Google Scholar 

  23. Ding F, Shi Y and Chen T 2007 Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst. Control Lett. 56(5): 373–380

    Article  MathSciNet  MATH  Google Scholar 

  24. Gotmare A, Patidar R and George N V 2015 Nonlinear system identification using a cuckoo search optimized adaptive Hammerstein model. Expert Syst. Appl. 42(5): 2538–2546

    Article  Google Scholar 

  25. Hafsi S, Laabidi K and Lahmari M K 2012 Identification of Wiener-Hammerstein model with multi segment piecewise-linear characteristic. In: 16th IEEE Mediterranean Electrotechnical Conference (MELECON), Tunisia, 5–10, doi:10.1109/MELCON.2012.6196367

  26. Khani F and Haeri M 2015 Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models. Chem. Eng. Sci. 129: 223–231, doi:10.1016/j.ces.2015.02.021

    Google Scholar 

  27. Mao Y and Ding F 2015 Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique. Nonlinear Dyn. 79(3): 1745–1755

    Article  MATH  Google Scholar 

  28. Tang Y, Li Z and Guan X 2014 Identification of nonlinear system using extreme learning machine based Hammerstein model. Commun. Nonlinear Sci. Numer. Simul. 19(9): 3171–3183

    Article  MathSciNet  Google Scholar 

  29. Wang D Q and Ding F 2011 Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91(5): 1182–1189

    Article  MATH  Google Scholar 

  30. Wang D Q, Liu H B and Ding F 2015 Highly efficient identification methods for dual-rate Hammerstein systems. IEEE Trans. Control Syst. Technol. 23(5): 1952–1960

    Article  Google Scholar 

  31. Wang D Q and Ding F 2012 Hierarchical least squares estimation algorithm for Hammerstein-Wiener systems. IEEE Signal Process. Lett. 19(12): 825–828

    Article  Google Scholar 

  32. Wang D Q and Zhang W 2015 Improved least squares identification algorithm for multivariable Hammerstein systems. J. Franklin Inst. – Eng. Appl. Math. 352(11): 5292–5307

    Google Scholar 

  33. Wills A, Schön T B, Ljung L and Ninness B 2013 Identification of Hammerstein–Wiener models. Automatica 49(1): 70–81

    Article  MathSciNet  MATH  Google Scholar 

  34. Aguirre L A, Coelhoand M C S and Correa M V 2005 On the interpretation and practice of dynamical differences between Hammerstein and Wiener models. IEE Proc. Control Theory Appl. 152(4): 349–356

    Article  Google Scholar 

  35. Lin W and Liu P X 2006 Hammerstein model identification based on bacterial foraging. IET J. 42(23): 1332–1333

    Google Scholar 

  36. Jeraj J and Mathews V J 2006 Stochastic mean-square performance analysis of an adaptive Hammerstein filter. IEEE Trans. Signal Process. 54(6): 2168– 2177

    Article  Google Scholar 

  37. Jeraj J, Mathews V J and Dubow J 2006 A stable adaptive Hammerstein filter employing partial orthogonalization of the input signals. IEEE Trans. Signal Process. 54(4): 1412–1420

    Article  Google Scholar 

  38. Sbeity F, Girault J M, Ménigot S and Charara J 2012 Sub and ultra harmonic extraction using several Hammerstein models. In: International Conference on Complex Systems (ICCS), Morocco, 1–5, doi:10.1109/ICoCS.2012.6458608

  39. Guo F 2004 A new identification method for Wiener and Hammerstein systems. PhD dissertation. Karlsruhe Univeristy, Institut fur Angewandte Informatik, Germany

  40. Sappal A S 2011 To develop a linearization technique for mitigating the RF power amplifier’s nonlinearity effects in a multi carrier W-CDMA base station. PhD dissertation, Punjabi University, India

  41. Chen B, Zhu Y, Hu J and Principe J C 2011 A variable step-size SIG algorithm for realizing the optimal adaptive FIR filter. Int. J. Control Autom. Syst. 9(6): 1049–1055

    Article  MathSciNet  Google Scholar 

  42. Mete S, Ozer S and Zorlu H 2014 System identification using Hammerstein model. In: 22nd Signal Processing and Communications Applications Conference (SIU), Turkey, 1303–1306, doi:10.1109/SIU.2014.6830476

  43. Ding F, Wang X H, Chen Q J and Y S Xiao 2016 Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. 35, doi:10.1007/s00034-015-0190-6

  44. Kozek M and Hametner C 2007 Block-oriented identification of Hammerstein/Wiener models using the RLS algorithm. Int. J. Appl. Electromagn. Mech. 25(1–4): 529– 535

    Google Scholar 

  45. Kara T 2005 Adaptive control of nonlinear systems with applications. PhD dissertation. University of Gaziantep, Electrical and Electronics Engineering, Turkey

  46. Cetinkaya M B 2010 Digital filter design by using artificial bee colony algorithm. PhD dissertation, Erciyes University, Graduate School of Natural and Applied Sciences, Turkey

  47. Sayadi M, Chaari A, Fnaiech F and Najim M 1996 A fast M-D chandrasekhar algorithm for second order Volterra adaptive filtering. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (3): 1339–1342, doi:10.1109/ICASSP.1996.543674

  48. Özer Ş, Zorlu H and Mete S 2014 System identification using Wiener model. In: Conference on Electrical, Electronics and Computer Engineering (ELECO), Turkey, 543–547

    Google Scholar 

  49. Stogioglou A G and McLaughlin S 1994 New results in system identification of FIR systems. In: Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers 1: 430–434, doi:10.1109/ACSSC.1994.471490

    Google Scholar 

Download references

Acknowledgment

This work is supported by Research Fund of Erciyes University (Project code: FDK-2014-5308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Zorlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, S., Zorlu, H. & Mete, S. System identification application using Hammerstein model. Sādhanā 41, 597–605 (2016). https://doi.org/10.1007/s12046-016-0505-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0505-8

Keywords

Navigation