Skip to main content
Log in

A parallel implementation of the ghost-cell immersed boundary method with application to stationary and moving boundary problems

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

A modified version of the previously reported ghost-cell immersed boundary method is implemented in parallel environment based on distributed memory allocation. Reconstruction of the flow variables is carried out by the inverse distance weighting technique. Implementation of the normal pressure gradient on the immersed surface is demonstrated. Finite volume method with non-staggered arrangement of variables on a non-uniform cartesian grid is employed to solve the fluid flow equations. The proposed method shows reasonable agreement with the reported results for flow past a stationary sphere, rotating and transversely oscillating circular cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Peskin C S 1972 Flow patterns around heart valves:a numerical method. J. Comput. Phys. 10: 252–271

    Article  MathSciNet  MATH  Google Scholar 

  2. Goldstein D, Handler R and Sirovich L 1993 Modelling a no-slip flow boundary with an external force field. J. Comput. Phys. 105: 354–366

    Article  MATH  Google Scholar 

  3. Mohd-Yosuf J 1997 Combined immersed-boundary/ b-spline methods for simulations of flow in complex geometries. CTR, Annual Research Briefs 317–327

  4. Kim J, Kim D and Choi H 2001 An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171: 132–150

    Article  MathSciNet  MATH  Google Scholar 

  5. Majumdar S, Iaccarino G and Durbin P 2001 Rans solvers with adaptive structured boundary non-conforming grids. CTR, Annual Research Briefs 353–366

  6. Tseng Y H and Ferziger J H 2003 A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192: 593–623

    Article  MathSciNet  MATH  Google Scholar 

  7. Mittal R, Dong H, Bozkurttas M, Najjar F M, Vargas A and Loebbecke A V 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227: 4825–4852

    Article  MathSciNet  MATH  Google Scholar 

  8. De A K 2014 An implicit non-staggered cartesian grid method for incompressible viscous flows in complex geometries. Sadhana Ind. Acad. Sci. 39: 1071–1094

    MATH  Google Scholar 

  9. Lee J and You D 2013 An implicit ghost-cell immersed boundary method for simulations of moving body problems with control of spurious force oscillations. J. Comput. Phys. 233: 295–314

    Article  MathSciNet  Google Scholar 

  10. Kim D and Choi H 2006 Immersed boundary method for flow around an arbitrarily moving body. J. Comput. Phys. 212: 662–680

    Article  MathSciNet  MATH  Google Scholar 

  11. Iaccarino G and Verzicco R 2003 Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56: 331–347

    Article  Google Scholar 

  12. Gao T, Tseng Y H and Lu X Y 2007 An improved hybrid cartesian/immersed boundary method for fluid-solid flows. Int. J. Numer. Meth. Fluids 55: 1189–1211

    Article  MathSciNet  MATH  Google Scholar 

  13. Mittal R and Iaccarino G 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37: 239–261

    Article  MathSciNet  MATH  Google Scholar 

  14. Pope S B 2000 Turbulent lows. Cambridge University Press. Cambridge

    Book  Google Scholar 

  15. De A K and Dalal A 2006 Numerical simulation of unconfined flow past a triangular cylinder. Int. J. Numer. Meth. Fluids 52: 801–821

    Article  MATH  Google Scholar 

  16. Stone H L 1968 Iterative solution of implicit approximation of multidimensional partial differential equations. SIAM J. Numer. Anal. 5: 530–558

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang S-L 1997 Gpbi-cg:Generalized product-type methods based on bi-cg for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 18(2): 537–551

    Article  MathSciNet  MATH  Google Scholar 

  18. Hunt J C R, Wray A A and Moin P 1988 Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88 2, 193–208

  19. Johnson T A and Patel V C 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378: 19–70

    Article  Google Scholar 

  20. Den Hartog J P 1934 The vibration problems in engineering. In: Proceedings of the 4th International Congresson Applied Mechanics Cambridge, U K, pp. 36–53

  21. Bishop R E D and Hassan A Y 1964 The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proc. R. Soc. Lond. Ser. A 277: 51–75

    Article  Google Scholar 

  22. Koopmann G H 1967 The vortex wakes of vibrating cylinders at low reynolds number. J. Fluid Mech. 23: 501–512

    Article  Google Scholar 

  23. Zdravkovich M M 1982 Modification of vortex shedding in the synchronization range. ASME J. Fluids Eng. 104: 513–517

    Article  Google Scholar 

  24. Williamson C H K and Roshko A 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2: 355–381

    Article  Google Scholar 

  25. Guilmineau E and Queutey P 2002 A numerical simulation of vortex shedding from an oscillating circular cylinder. J. Fluids Struct. 16: 773–794

    Article  Google Scholar 

  26. Zhou C H and Shu C 2011 A local domain-free discretization method for simulation of incompressible flows over moving bodies. Int. J. Numer. Meth. Fluids 66: 162–182

    Article  MathSciNet  MATH  Google Scholar 

  27. Kang S, Choi H and Lee S 1999 Laminar flow past a rotating circular cylinder. Phys. Fluids 11: 3312–3321

    Article  MATH  Google Scholar 

  28. Stojkovic D, Breuer M and Durst F 2002 Effect of high rotation rates on the laminar flow around a circular cylinder. Phys. Fluids 14: 3160–3178

    Article  MathSciNet  MATH  Google Scholar 

  29. Mittal S and Kumar B 2003 Flow past a rotating cylinder. J. Fluid Mech. 476: 303–334

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumar S, Cantu C and Gonzalez B 2011 Flow past a rotating cylinder at low and high rotation rates. ASME J. Fluid Eng. 133: 041201–1–041201–9

    Google Scholar 

Download references

Acknowledgments

The present research was carried out on the funds available through the institute start-up Grant SG/ME/P/ARKD/1/2009-2010 and DST First Track Grant SERC/ET-0166/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K De.

Appendix

Appendix

Finite difference approximations of the partial derivatives in non-uniform grids at a point (\(x_i,y_j,z_k\))

First derivatives

$$\begin{aligned} \frac{\partial \phi _i}{\partial x}=\frac{\phi _{i+1}(\Delta x_{i-1})^2-\phi _{i-1}(\Delta x_{i+1})^2-\phi _i\left( (\Delta x_{i-1})^2-(\Delta x_{i+1})^2\right) }{\Delta x_{i+1}\Delta x_{i-1}(\Delta x_{i+1}+\Delta x_{i-1})}+O[(\Delta x)^2] \end{aligned}$$
(13a)
$$\begin{aligned} \frac{\partial \phi _j}{\partial y}=\frac{\phi _{j+1}(\Delta y_{j-1})^2-\phi _{j-1}(\Delta y_{j+1})^2-\phi _j\left( (\Delta y_{j-1})^2-(\Delta y_{j+1})^2\right) }{\Delta y_{j+1}\Delta y_{j-1}(\Delta y_{j+1}+\Delta y_{j-1})}+O[(\Delta y)^2] \end{aligned}$$
(13b)
$$\begin{aligned} \frac{\partial \phi _k}{\partial z}=\frac{\phi _{k+1}(\Delta z_{k-1})^2-\phi _{k-1}(\Delta z_{k+1})^2-\phi _k\left( (\Delta z_{k-1})^2-(\Delta z_{k+1})^2\right) }{\Delta z_{k+1}\Delta z_{k-1}(\Delta z_{k+1}+\Delta z_{k-1})}+O[(\Delta z)^2]. \end{aligned}$$
(13c)

Second derivatives

$$\begin{aligned} \frac{\partial ^2 \phi _i}{\partial x^2}=2\left( \frac{\phi _{i+1}\Delta x_{i-1}+\phi _{i-1}\Delta x_{i+1}-\phi _i(\Delta x_{i+1}+\Delta x_{i-1})}{\Delta x_{i+1}\Delta x_{i-1}(\Delta x_{i+1}+\Delta x_{i-1})}\right) +O[\Delta x] \end{aligned}$$
(14a)
$$\begin{aligned} \frac{\partial ^2 \phi _j}{\partial y^2}=2\left( \frac{\phi _{j+1}\Delta y_{j-1}+\phi _{j-1}\Delta y_{j+1}-\phi _j(\Delta y_{j+1}+\Delta y_{j-1})}{\Delta y_{j+1}\Delta y_{j-1}(\Delta y_{j+1}+\Delta y_{j-1})}\right) +O[\Delta y] \end{aligned}$$
(14b)
$$\begin{aligned} \frac{\partial ^2 \phi _k}{\partial z^2}=2\left( \frac{\phi _{k+1}\Delta z_{k-1}+\phi _{k-1}\Delta z_{k+1}-\phi _k(\Delta z_{k+1}+\Delta z_{k-1})}{\Delta z_{k+1}\Delta z_{k-1}(\Delta z_{k+1}+\Delta z_{k-1})}\right) +O[\Delta z]. \end{aligned}$$
(14c)

Mixed derivatives

$$\begin{aligned} \frac{\partial ^2 \phi _{i,j}}{\partial x \partial y}=\frac{\phi _{i+1,j+1}-\phi _{i+1,j-1}-\phi _{i-1,j+1}+\phi _{i-1,j-1}}{(\Delta x_{i+1}+\Delta x_{i-1})(\Delta y_{j+1}+\Delta y_{j-1})}+O[\Delta x,\Delta y] \end{aligned}$$
(15a)
$$\begin{aligned} \frac{\partial ^2 \phi _{i,k}}{\partial x \partial z}=\frac{\phi _{i+1,k+1}-\phi _{i+1,k-1}-\phi _{i-1,k+1}+\phi _{i-1,k-1}}{(\Delta x_{i+1}+\Delta x_{i-1})(\Delta z_{k+1}+\Delta z_{k-1})}+O[\Delta x,\Delta z] \end{aligned}$$
(15b)
$$\begin{aligned} \frac{\partial ^2 \phi _{j,k}}{\partial y \partial z}=\frac{\phi _{j+1,k+1}-\phi _{j+1,k-1}-\phi _{j-1,k+1}+\phi _{j-1,k-1}}{(\Delta y_{j+1}+\Delta y_{j-1})(\Delta z_{k+1}+\Delta z_{k-1})}+O[\Delta y,\Delta z], \end{aligned}$$
(15c)

where

\(\Delta x_{i+1}=x_{i+1}-x_i\, , \,\,\,\Delta x_{i-1}=x_i-x_{i-1}\, , \,\,\,\Delta y_{j+1}=y_{j+1}-y_j\)

\(\Delta y_{j-1}=y_j-y_{j-1}\, ,\,\,\,\Delta z_{k+1}=z_{k+1}-z_k\, ,\,\,\,\Delta z_{k-1}=z_k-z_{k-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, S., De, A.K. A parallel implementation of the ghost-cell immersed boundary method with application to stationary and moving boundary problems. Sādhanā 41, 441–450 (2016). https://doi.org/10.1007/s12046-016-0484-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0484-9

Keywords

Navigation