Skip to main content
Log in

\({\varvec{L^p-L^q}}\) estimates for generalized spherical averages

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study \(L^p\) improving estimates and continuity properties of maximal operators for generalized spherical means. Once these features are obtained, they are applied to get sparse bounds on lacunary and full generalized spherical averages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agranovsky M, Kuchment P and Quinto E T, Range descriptions for the spherical mean Radon transform, J. Funct. Anal. 248 (2007) 344–386

    Article  MathSciNet  Google Scholar 

  2. Anderson T C, Hughes K, Roos J and Seeger A, \(L^p\rightarrow L^q\) bounds for spherical maximal operators, Math. Z. 297 (2021) 1057–1074

    Article  MathSciNet  Google Scholar 

  3. Bagchi S, Hait S, Roncal L and Thangavelu S, On the maximal function associated to the lacunary spherical means on the Heisenberg group, N. Y. J. Math. 27 (2021) 631–667

    MATH  Google Scholar 

  4. Beltran D, Roos J and Seeger A, Multi-scale sparse domination, arXiv:2009.00227

  5. Bernicot F, Frey D and Petermichl S, Sharp weighted norm estimates beyond Calderón–Zygmund theory, Anal. PDE 9(5) (2016) 1079–1113

    Article  MathSciNet  Google Scholar 

  6. Bourgain J, Averages in the plane over convex curves and maximal operators, J. Anal. Math. 47 (1986) 69–85

    Article  MathSciNet  Google Scholar 

  7. Bresters D W, On the equation of Euler–Poisson–Darboux, SIAM J. Math. Anal. 4 (1973) 31–41

    Article  MathSciNet  Google Scholar 

  8. Calderón C P, Lacunary spherical means, Ill. J. Math. 23 (1979) 476–484

    MathSciNet  Google Scholar 

  9. Ciaurri Ó, Nowak A and Roncal L, Two-weight mixed norm estimates for a generalized spherical mean Radon transform acting on radial functions, SIAM J. Math. Anal. 49(6) (2017) 4402–4439

    Article  MathSciNet  Google Scholar 

  10. Ciaurri Ó, Nowak A and Roncal L, Maximal estimates for a generalized spherical mean Radon transform acting on radial functions, Ann. Mat. Pura Appl. (4) 199 (2020) 1597-1619

    Article  MathSciNet  Google Scholar 

  11. Cladek L and Ou Y, Sparse domination of Hilbert transforms along curves, Math. Res. Lett. 25(2) (2018) 415–436

    Article  MathSciNet  Google Scholar 

  12. Conde-Alonso J M, Di Plinio F, Parissis I and Vempati M N, A metric approach to sparse domination, arXiv:2009.00336

  13. Duoandikoetxea J, Fourier analysis, translated and revised from the 1995 Spanish original by David Cruz-Uribe, Graduate Studies in Mathematics, 29 (2001) (American Mathematical Society, Providence)

  14. Duoandikoetxea J, Moyua A and Oruetxebarria O, Estimates for radial solutions to the wave equation, Proc. Am. Math. Soc. 144 (2016) 1543–1552

    Article  MathSciNet  Google Scholar 

  15. Finch D, Haltmeier M and Rakesh, Inversion of spherical means and the wave equation in even dimensions, SIAM J. Appl. Math. 68 (2007) 392–412

    Article  MathSciNet  Google Scholar 

  16. Finch D, Patch S K and Rakesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal. 35 (2004) 1213–1240

    Article  MathSciNet  Google Scholar 

  17. Ganguly P and Thangavelu S, On the lacunary spherical maximal function on the Heisenberg group, J. Funct. Anal. 280(3) (2021) 108832, 32

    Article  MathSciNet  Google Scholar 

  18. Grafakos L, Classical Fourier Analysis, Graduate Texts in Mathematics (2008) (New York: Springer)

  19. Lacey M T, Sparse bounds for spherical maximal functions, J. Anal. Math. 139(2) (2019) 613–635

    Article  MathSciNet  Google Scholar 

  20. Lee S, Endpoint estimates for the circular maximal function, Proc. Am. Math. Soc. 131 (2003) 1433–1442

    Article  MathSciNet  Google Scholar 

  21. Littman W, \(L^p-L^q\) estimates for singular integral operators arising from hyperbolic equations, in Partial differential equations, (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Amer. Math. Soc., Providence, R.I. (1973) pp. 479–481

  22. Miao C, Yang J and Zheng J, On local smoothing problems and Stein’s maximal spherical means, Proc. Am. Math. Soc. 145 (2017) 4269–4282

    Article  MathSciNet  Google Scholar 

  23. Mockenhaupt G, Seeger A and Sogge C, Wave front sets, local smoothing and Bourgain’s circular maximal theorem, Ann. Math. 136 (1992) 207–218

    Article  MathSciNet  Google Scholar 

  24. Olver F W J, Lozier D W, Boisvert R F and Clark C W, NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC (2010) (Cambridge: Cambridge University Press)

  25. Rubin B, Inversion formulae for the spherical mean in odd dimensions and the Euler–Poisson–Darboux equation, Inverse Probl. 24 (2008) 025021, 10

    Article  MathSciNet  Google Scholar 

  26. Schlag W, \(L^p\rightarrow L^q\) estimates for the circular maximal function, Ph.D. Thesis. California Institute of Technology (1996)

  27. Schlag W and Sogge C D, Local smoothing estimates related to the circular maximal theorem, Math. Res. Lett. 4 (1997) 1–15

    Article  MathSciNet  Google Scholar 

  28. Stein E M, Interpolation of linear operators, Trans. Am. Math. Soc. 83 (1956) 482–492

    Article  MathSciNet  Google Scholar 

  29. Stein E M, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976) 2174–2175

    Article  MathSciNet  Google Scholar 

  30. Stein E M and Weiss G, Introduction to Fourier Analysis in Euclidean Spaces (1971) (Princeton: Princeton University Press)

  31. Strichartz R S, Convolutions with kernels having singularities on a sphere, Trans. Am. Math. Soc. 148 (1970) 461–471

    Article  MathSciNet  Google Scholar 

  32. Strichartz R S, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44(3) (1977) 705–714

    Article  MathSciNet  Google Scholar 

  33. Weinstein A, On the wave equation and the equation of Euler–Poisson, Proceedings of Symposia in Applied Mathematics, Vol. V, Wave motion and vibration theory (1954) (New York: McGraw-Hill Book Company Inc.) pp. 137–147

Download references

Acknowledgements

The authors are immensely grateful to Professor Luz Roncal for the suggested ideas and the careful reading of the manuscript. The authors thank the referee for pointing out the corrections in detail. The first-named author was supported by Inspire Faculty Fellowship (DST/INSPIRE/04/2016/000776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Bagchi.

Additional information

Communicated by Sundaram Thangavelu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagchi, S., Hait, S. & Senthil Raani, K.S. \({\varvec{L^p-L^q}}\) estimates for generalized spherical averages. Proc Math Sci 132, 35 (2022). https://doi.org/10.1007/s12044-022-00683-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-022-00683-6

Keywords

2020 Mathematics Subject Classification

Navigation