Skip to main content
Log in

p(d)-Improving properties and sparse bounds for discrete spherical maximal averages

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We exhibit a range of P(D)-improving properties for the discrete spherical maximal average in every dimension d ≥ 5. These improving properties are then used to establish sparse bounds, which extend the discrete maximal theorem of Magyar, Stein, and Wainger to weighted spaces. In particular, the sparse bounds imply that in every dimension d ≥ 5 the discrete spherical maximal average is a bounded map from 2(w) into 2(w) provided \({w^{{d \over {d - 4}}}}\) belongs to the Muckenhoupt class A2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Anal. Math. 47 (1986), 69–85.

    Article  MathSciNet  Google Scholar 

  2. M. Christ and E. M. Stein, A remark on singular Calderón-Zygmund theory, Proc. Amer. Math. Soc. 99 (1987), 71–75.

    MathSciNet  MATH  Google Scholar 

  3. J. M. Conde-Alonso and G. Rey, A pointwise estimate for positive dyadic shifts and some applications, Math. Ann. 365 (2016), 1111–1135.

    Article  MathSciNet  Google Scholar 

  4. A. Culiuc, R. Kesler and M. T. Lacey, Sparse bounds for the discrete cubic Hilbert transform, Anal. PDE 12 (2019), 1259–1272.

    Article  MathSciNet  Google Scholar 

  5. A. D. Ionescu and S. Wainger, Lpboundedness of discrete singular Radon transforms, J. Amer. Math. Soc. 19 (2006), 357–383.

    Article  MathSciNet  Google Scholar 

  6. R. Kesler and M. T. Lacey, Sparse endpoint estimates for Bochner—Riesz multipliers on the plane, Collect. Math. 69 (2018), 427–435.

    Article  MathSciNet  Google Scholar 

  7. R. Kesler and D. M. Arias, Uniform sparse bounds for discrete quadratic phase Hilbert transforms, Anal. Math. Phys. 9 (2019), 263–274.

    Article  MathSciNet  Google Scholar 

  8. B. Krause and M. T. Lacey, Sparse bounds for random discrete Carleson theorems, in 50 Years with Hardy Spaces, Birkhäuser, Cham, 2018, pp. 317–332.

    Chapter  Google Scholar 

  9. B. Krause and M. T. Lacey, A discrete quadratic Carleson theorem on ℓ2with a restricted supremum, Int. Math. Res. Not. IMRN (2017), 3180–3208.

    Google Scholar 

  10. M. T. Lacey, An elementary proof of the A2bound, Israel J. Math. 217 (2017), 181–195.

    Article  MathSciNet  Google Scholar 

  11. M. T. Lacey, Sparse bounds for spherical maximal functions, J. Anal. Math. 139 (2019), 613–635.

    Article  MathSciNet  Google Scholar 

  12. M. T. Lacey and R. Kesler, p-improving inequalities for discrete spherical averages, Anal. Math. 46 (2020), 85–95.

    Article  MathSciNet  Google Scholar 

  13. M. T. Lacey and S. Spencer, Sparse bounds for oscillatory and random singular integrals, New York J. Math. 23 (2017), 119–131.

    MathSciNet  MATH  Google Scholar 

  14. A. Magyar, On the distribution of lattice points on spheres and level surfaces of polynomials, J. Number Theory 122 (2007), 69–83.

    Article  MathSciNet  Google Scholar 

  15. M. Mirek, E. M. Stein and B. Trojan, p(ℤd)-estimates for discrete operators of Radon type: variational estimates, Invent. Math. 209 (2017), 665–748.

    Article  MathSciNet  Google Scholar 

  16. Lillian B. Pierce, A note on twisted discrete singular Radon transforms, Math. Res. Lett. 17 (2010), 701–720.

    Article  MathSciNet  Google Scholar 

  17. L. B. Pierce, Discrete fractional Radon transforms and quadratic forms, Duke Math. J. 161 (2012), 69–106.

    Article  MathSciNet  Google Scholar 

  18. W. Schlag, A generalization of Bourgain’s circular maximal theorem, J. Amer. Math. Soc. 10 (1997), 103–122.

    Article  MathSciNet  Google Scholar 

  19. E. M. Stein, Maximal functions. I. Spherical means, Proc. Natl. Acad. Sci. USA 73 (1976), 2174–2175.

    Article  MathSciNet  Google Scholar 

  20. E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239–1295.

    Article  MathSciNet  Google Scholar 

  21. E. M. Stein and S. Wainger, Two discrete fractional integral operators revisited, J. Anal. Math. 87 (2002), 451–479.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kesler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesler, R. p(d)-Improving properties and sparse bounds for discrete spherical maximal averages. JAMA 143, 151–178 (2021). https://doi.org/10.1007/s11854-021-0150-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0150-y

Navigation