Skip to main content
Log in

The universal ordinary deformation ring associated to a real quadratic field

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study ring structure of the big ordinary Hecke algebra \({{\mathbb {T}}}\) with the modular deformation \(\rho _{{\mathbb {T}}}:{\mathrm {Gal}}({\bar{{{\mathbb {Q}}}}}/{{\mathbb {Q}}})\rightarrow {\mathrm {GL}}_2({{\mathbb {T}}})\) of an induced Artin representation \({\text {Ind}}_F^{{\mathbb {Q}}}\varphi \) from a real quadratic field F with a fundamental unit \(\varepsilon \), varying a prime \(p\ge 3\) split in F. Under mild assumptions (H0)–(H3) given in the Introduction (on the prime p), we prove that \({{\mathbb {T}}}\) is an integral domain free of even rank \(e>0\) over \(\Lambda \) for the weight Iwasawa algebra \(\Lambda \) étale outside \({\mathrm {Spec}}(\Lambda /p(\langle \varepsilon \rangle -1))\) for \(\langle \varepsilon \rangle {:}{=}(1+T)^{\log _p(\varepsilon )/\log _p(1+p)}\in {{\mathbb {Z}}}_p[[T]]\subset \Lambda \). If \(p\not \mid e\), \({{\mathbb {T}}}\) is shown to be a normal noetherian domain of dimension 2 with ramification locus exactly given by \((\langle \varepsilon \rangle -1)\). Moreover, only under p-distinguishedness (H0), we prove that any modular specialization of weight \(\ge 2\) of \(\rho _{{\mathbb {T}}}\) is indecomposable over the inertia group at p (solving a conjecture of Greenberg without exception).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bellaïche J and Chenevier G, Families of Galois representations and Selmer groups, Astérisqué 324 (2009)

  2. Bellaïche J and Dimitrov M, On the eigencurve at classical weight 1 points, Duke Math. J. 165 (2016) 245–266

    Article  MathSciNet  Google Scholar 

  3. Betina A, Ramification of the Eigencurve at classical RM points, Can. J. Math. 72 (2020) 57–88

  4. Boeckle G, Guiraud D, Kalyanswamy S and Khare C, Wieferich Primes and a mod \(p\) Leopoldt Conjecture, preprint, 31 pages (2018), arXiv:1805.00131

  5. Bourbaki N, Algébre Commutative, Masson, Paris, 1985–1998

  6. Castella F and Wang-Erickson C, Class groups and local indecomposability for non-CM forms, preprint 2018, published online in J. European Math. Soc., https://doi.org/10.4171/JEMS/1107

  7. Chenevier G, The \(p\)-adic analytic space of pseudo characters of a profinite group, and pseudo representations over arbitrary rings, Automorphic Forms and Galois Representations: Vol. I, London Mathematical Society Lecture Note Series, vol. 414 (2014) (Cambridge: Cambridge Univ. Press) pp. 221–285

  8. Cho S, Deformations of induced Galois representations, Thesis, University of California, Los Angeles (1999)

  9. Cho S and Vatsal V, Deformations of Induced Galois Representations, J. Reine Angew. Math. 556 (2003) 79–97

  10. Cline E, Parshall B and Scott L, Cohomology of finite groups of Lie type, I, Publ. l’IHES 45 (1975) 169–191

  11. Diamond F, Flach M and Guo L, The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. École Norm. Sup. (4) 37 (2004) 663–727

  12. Dimitrov M, On the local structure of ordinary Hecke algebras at classical weight one points, Automorphic forms and Galois representations, Vol. 2, pp. 1–16, London Math. Soc. Lecture Note Ser., vol. 415 (2014) (Cambridge: Cambridge Univ. Press)

  13. Dimitrov M and Ghate E, On classical weight one forms in Hida families, J. Théor. Nombres Bordeaux 24 (2012) 669–690

    Article  MathSciNet  Google Scholar 

  14. Doi K, Hida H and Ishii H, Discriminants of Hecke fields and the twisted adjoint L-values for GL(2), Inventiones Math. 134 (1998) 547–577

  15. Ghate E and Vatsal V, On the local behaviour of ordinary \(\Lambda \)-adic representations, Ann. Inst. Fourier (Grenoble) 54 (2004) 2143–2162

    Article  MathSciNet  Google Scholar 

  16. Hida H, Elementary Modular Iwasawa Theory (2021) (Singapore: World Scientific)

  17. Hida H, Geometric Modular Forms and Elliptic Curves, second edition (2012) (Singapore: World Scientific)

    MATH  Google Scholar 

  18. Hida H, Hilbert Modular Forms and Iwasawa Theory, Oxford Mathematical Monographs (2006) (Oxford University Press) (a list of errata posted at www.math.ucla.edu/~hida)

  19. Hida H, Modular Forms and Galois Cohomology, Cambridge Studies in Advanced Mathematics, vol. 69 (2000) (Cambridge, England: Cambridge University Press) (a list of errata posted at www.math.ucla.edu/h̃ida)

  20. Hida H, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Ec. Norm. Sup. 4th series 19 (1986) 231–273

  21. Hida H, Modules of congruence of Hecke algebras and \(L\)-functions associated with cusp forms, Amer. Math J. 110 (1988) 323–382

    Article  MathSciNet  Google Scholar 

  22. Hida H, Global quadratic units and Hecke algebras, Documenta Math. 3 (1998) 273–284

    MathSciNet  MATH  Google Scholar 

  23. Hida H, Big Galois representations and \(p\)-adic \(L\)-functions, Compositio Math. 151 (2015) 603–664

    Article  MathSciNet  Google Scholar 

  24. Hida H, Arithmetic of adjoint \(L\)-values, in: \(p\)-Adic aspects of modular forms, Chapter 6, Pune IISER Conference Proceedings, pp. 185–236 (2016)

  25. Hida H, Cyclicity of adjoint Selmer groups and fundamental units, Adv. Stud. Pure Math. 86 (2020) 351–411

  26. Hida H, Local indecomposability via a presentation of the Hecke algebra, Appendix to “Class groups and local indecomposability for non-CM forms” by Castella F and Wang-Erickson C, published online in J. European Math. Soc., https://doi.org/10.4171/JEMS/1107

  27. Kalyanswamy S, Remarks on automorphy of residually dihedral representations, Math. Res. Lett. 25 (2018) 1285–1304

    Article  MathSciNet  Google Scholar 

  28. Klaška J, Short remark on Fibonacci–Wieferich primes, Acta Mathematica Universitatis Ostraviensis 15 (2007) 21–25

  29. Kleiman S L, Relative duality for quasicoherent sheaves, Compos. Math. 41 (1980) 39–60

  30. Kunz E, Kähler differentials, Advanced Lectures Mathematics (1986) (Vieweg) (posted at www.uni-regensburg.de/Fakultaten/nat_Fak_l/kunz/index.html)

  31. Kunz E and Waldi R, Regular Differential Forms, Contemporary Math., vol. 79, AMS (1988)

  32. Matsumura H, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8 (1986) (Cambridge Univ. Press)

  33. Mazur B and Roberts L, Local Euler characteristic, Invent. Math. 9 (1970) 201–234

    Article  MathSciNet  Google Scholar 

  34. Mazur B and Wiles A, Class fields of abelian extensions of \({\mathbb{Q}}\), Inventiones Math. 76 (1984) 179–330

  35. Miyake T, Modular Forms, Springer Monographs in Mathematics (2006) (Springer)

  36. Ribet K, Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, vol. 1 (1984) (PWN, Warsaw) pp. 503–514

  37. Sun Zhi-Hong and Sun Zhi-Wei, Fibonacci numbers and Fermat’s last theorem, Acta Arithmetica 60 (1992) 371–388

  38. Taylor R and Wiles A, Ring theoretic properties of certain Hecke modules, Ann. Math. 141 (1995) 553–572

    Article  MathSciNet  Google Scholar 

  39. Thorne Jack A, Automorphy of some residually dihedral Galois representations, Math. Ann. 364 (2016) 589–648

    Article  MathSciNet  Google Scholar 

  40. Tilouine J and Urban E, Integral period relations and congruences, preprint (2020) to appear in Algebra & Number Theory

  41. Wang-Erickson C, Algebraic families of Galois representations and potentially semi-stable pseudodeformation rings, Math. Ann. 371 (2018) 1615–1681

    Article  MathSciNet  Google Scholar 

  42. Wake P and Wang-Erickson C, Ordinary pseudorepresentations and modular forms, Proc. Amer. Math. Soc. Ser. B 4 (2017) 53–71

    Article  MathSciNet  Google Scholar 

  43. Wake P and Wang-Erickson C, Pseudo-modularity and Iwasawa theory, Amer. J. Math. 140 (2018) 977–1040

    Article  MathSciNet  Google Scholar 

  44. Weil A , Exercices dyadiques, Inventiones Math. 27 (1974) 1–22, (Œuvres III, [1974e])

  45. Wiles A, On ordinary \(\Lambda \)-adic representations associated to modular forms, Inventiones Math. 94 (1988) 529–573

    Article  MathSciNet  Google Scholar 

  46. Wiles A, The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990) 493–540

    Article  MathSciNet  Google Scholar 

  47. Wiles A, Modular elliptic curves and Fermat’s last theorem, Ann. Math. 141 (1995) 443–551

    Article  MathSciNet  Google Scholar 

  48. Zhao B, Local indecomposability of Hilbert modular Galois representations, Ann. Inst. Fourier (Grenoble) 64 (2014) 1521–1560

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is partially supported by the NSF Grant DMS 1464106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruzo Hida.

Additional information

Communicating Editor: A Raghuram

Appendices

Appendices

Appendix A. Control of Selmer group

We used in the main text a precise control result and determination of the size (i.e., the characteristic ideal and Fitting ideal) of the adjoint Selmer group, though perhaps it is well known to specialists. We present a detailed exposition of the control in this first appendix. The result is valid for any odd absolutely irreducible p-ordinary p-distinguished representation \({{\bar{\rho }}}:G\rightarrow {\mathrm {GL}}_2({{\mathbb {F}}})\) not necessarily induced from F. We only assume that the ramification index of \({{\bar{\rho }}}\) at primes outside p is prime to p and write G for the Galois group over \({{\mathbb {Q}}}\) of the maximal p-profinite extension unramified outside p of the splitting field of \({{\bar{\rho }}}\). Write S for the set of primes \(\ne p\) ramified in \(F({{\bar{\rho }}})/{{\mathbb {Q}}}\) such that \({{\bar{\rho }}}|_{I_l}=\bar{\epsilon }_l\oplus \bar{\delta }_l\). By (l) in Section 2, if \(l\ne p\) outside S ramifies in \(F({{\bar{\rho }}})/{{\mathbb {Q}}}\), \({{\bar{\rho }}}|_{D_l}\) is irreducible.

Let \({\varvec{\kappa }}{:}{=}\det ({\varvec{\rho }}):G\rightarrow \Lambda ^\times \). Then \((\Lambda ,{\varvec{\kappa }})\) represents the deformation functor

$$\begin{aligned} A\mapsto \{\xi :G\rightarrow A^\times |\xi \ {\hbox {mod }}{{\mathfrak {m}}}_A=\det ({{\bar{\rho }}})\}. \end{aligned}$$

Consider the following deformation functor \(D_{\varvec{\kappa }}:CL_{/\Lambda }\rightarrow SETS\) slightly different from the one \({{\mathcal {D}}}\) defined in (s6) (or (7.1)):

$$\begin{aligned} D_{\varvec{\kappa }}(A)=\{\rho \in {{\mathcal {D}}}(A)|\det (\rho )=i_A\circ {\varvec{\kappa }}\}/\Gamma ({{\mathfrak {m}}}_A), \end{aligned}$$

where writing \(i_A:\Lambda \rightarrow A\) for \(\Lambda \)-algebra structure of A. This functor is again represented by \((R=R_{{\mathbb {Q}}},{\varvec{\rho }})\) regarding R as a \(\Lambda \)-algebra by the W-algebra homomorphism induced by \(\det ({\varvec{\rho }}):G\rightarrow R^\times \). Indeed, if \(\rho \in D_{\varvec{\kappa }}(A)\), we have \(i_A\circ {\varvec{\kappa }}=\det (\rho )\). Regarding \(\rho \in {{\mathcal {D}}}(A)\), we have a unique W-algebra homomorphism \( R\xrightarrow {\phi }A\) such that \(\phi \circ {\varvec{\rho }}\approx \rho \), where “\(\approx \)” is conjugation by \(\Gamma ({{\mathfrak {m}}}_A)\). Taking determinant, we get \(\phi \circ {\varvec{\kappa }}=\det (\rho )\) showing that \(\phi \) is compatible with \(i_R\) and \(i_A\); so, it is a \(\Lambda \)-algebra homomorphism, showing \({\mathrm {Hom}}_\Lambda ( R,A)\cong D_{\varvec{\kappa }}(A)\) by \(\phi \leftrightarrow \rho \).

By the condition (l) for \(l\in S\), the universal representation \({\varvec{\rho }}\) is equipped with a basis \(({{\mathbf {v}}}_l,{{\mathbf {w}}}_l)\) so that \({\varvec{\rho }}(g){{\mathbf {v}}}_l=\epsilon _l(g){{\mathbf {v}}}_l\) and \({\varvec{\rho }}(g){{\mathbf {w}}}_l=\delta _l(g){{\mathbf {w}}}_l\) for \(g\in I_l\) for the Teichimüller lift \(\epsilon _l\) and \(\delta _l\) of \(\bar{\epsilon }_l\) and \(\bar{\delta }_l\), respectively. At p, for \(g\in D_p\), the matrix form of \({\varvec{\rho }}|_{D_p}\) for this basis is \(\left( {\begin{matrix}{\varvec{\epsilon }}&{}*\\ 0&{}{\varvec{\delta }}\end{matrix}}\right) \) with \({\varvec{\delta }}\) unramified. By representability, each class \(c\in D_{\varvec{\kappa }}(A)\) has \(\rho \) such that \(V(\rho )=V({\varvec{\rho }})\otimes _{R,\iota }A\) for a unique \(\iota \in {\mathrm {Hom}}_\text {B-alg}( R,A)\), we can choose a unique \(\rho \in c\) is equipped with a basis

$$\begin{aligned} \{(v_l={{\mathbf {v}}}_l\otimes 1,w_l={{\mathbf {w}}}_l\otimes 1)\}_{l\in S\cup \{p\}} \end{aligned}$$

compatible with specialization. We always choose such a specific representative \(\rho \) for each class in \(D_{\varvec{\kappa }}(A)\) hereafter.

Fix \(\rho _0\in D_{\varvec{\kappa }}(A)\). We study \({\mathrm {Sel}}(Ad(\rho _0)\). Take an A-module M with finite order and consider the ring \(A[M]=A\oplus M\) with \(M^2=0\). Then A[M] is still p-profinite. Pick \(\rho \in D_{\varvec{\kappa }}(A[M])\) such that \(\rho \mod M=\rho _0\). By our choice of representative \(\rho \) and \(\rho _0\) as above, we may (and do) assume \(\rho \mod M=\rho _0\).

Let \(\rho _0\) act on \(M_2(A)\) and \({{\mathfrak {s}}}{{\mathfrak {l}}}_2(A)=\{x\in M_2(A)|{\mathrm {Tr}}(x)=0\}\) by conjugation. Write this representation \(ad(\rho )\) and \(Ad(\rho )\) as before. Let \(ad(M)=ad(A)\otimes _AM\) and \(Ad(M)=Ad(A)\otimes _AM\) and regard them as G-modules by the action on ad(A) and Ad(A). Then we define

$$\begin{aligned} {{\mathcal {F}}}(A[M])=\frac{\{\rho :G\rightarrow {\mathrm {GL}}_2(A[M])|(\rho \ {\hbox {mod }}M)=\rho _0, [\rho ]\in D_{\varvec{\kappa }}(A[M])\}}{\Gamma (M)}, \end{aligned}$$
(A.1)

where \([\rho ]\) is the isomorphism class in \( D_{\varvec{\kappa }}(A)\) containing \(\rho \) and \(\Gamma (M){:}{=}{\text {Ker}}({\mathrm {GL}}_2(A[M])\rightarrow {\mathrm {GL}}_2(A))\) acts on \(\rho \) by conjugation.

Take M finite as above. For \(\rho \in {{\mathcal {F}}}(M)\), we can write \(\rho =\rho _0\oplus u'_\rho \) letting \(\rho _0\) acts on \(M_2(M)\) by matrix multiplication from the right. Then as before

$$\begin{aligned} \rho _0(gh)\oplus u'_\rho (gh)= & {} (\rho _0(g)\oplus u'_\rho (g))(\rho _0(h)\oplus u'_\rho (h))\\= & {} \rho _0(gh)\oplus (u'_\rho (g)\rho _0(h)+ \rho _0(g)u'_\rho (h)) \end{aligned}$$

produces \(u'_\rho (gh)=u'_\rho (g)\rho _0(h)+ \rho _0(g)u'_\rho (h)\) and multiplying by \(\rho _0(gh)^{-1}\) from the right, we get the cocycle relation for \(u_\rho (g)=u'_\rho (g)\rho _0(g)^{-1}\):

$$\begin{aligned} u_\rho (gh)=u_\rho (g)+gu_\rho (h)\ \text { for } gu_\rho (h)=\rho (g)u_\rho (h)\rho _0(g)^{-1}, \end{aligned}$$

getting the map \({{\mathcal {F}}}(A[M])\rightarrow H^1(G,ad(M))\) which factors through \(H^1(G,Ad(M))\). By computation, we can easily verify that \(\rho \) is \((1+M_2(M))\)-conjugate to \(\rho '\) if and only if \(u_\rho \) is cohomologous to \(u_{\rho '}\); so, this map is injective A-linear map identifying \({{\mathcal {F}}}(A[M])\) with

$$\begin{aligned} {\mathrm {Sel}}(Ad(M)){:}{=}{\text {Ker}}(H^1(G,Ad(M))\xrightarrow {{\mathrm {Res}}} \frac{H^1({{\mathbb {Q}}}_p,Ad(M))}{F^+_-H^1({{\mathbb {Q}}}_p,Ad(M))}), \end{aligned}$$

where \(F^+_-H^1({{\mathbb {Q}}}_p,Ad(M))\subset H^1({{\mathbb {Q}}}_p,Ad(M))\) is a A-submodule spanned by cohomology classes of cocycles \(u:G\rightarrow Ad(M)\) upper triangular over \(D_p\) and upper nilpotent over \(I_p\).

If \(M=\varinjlim _iM_i\) for finite A-modules \(M_i\), we just define

$$\begin{aligned} {\mathrm {Sel}}(Ad(M))=\varinjlim _i{\mathrm {Sel}}(Ad(M_i)). \end{aligned}$$

Then for finite \(M_i\), \({{\mathcal {F}}}(A[M_i])={\mathrm {Sel}}(Ad(M_i))\) and \(\varinjlim _i{{\mathcal {F}}}(M_i)={\mathrm {Sel}}(\varinjlim _iAd(M_i)).\)

For each \([\rho _0]\in D_{\varvec{\kappa }}(A)\), choose a representative \(\rho _0=\iota \circ {\varvec{\rho }}\). Then we have a map \({{\mathcal {F}}}(A[M])\rightarrow D_{\varvec{\kappa }}(A[M])\) for each finite A-module M sending \(\rho \in {{\mathcal {F}}}(A[M])\) to the class \([\rho ]\in D_{\varvec{\kappa }}(A[M])\). By our choice of \(\rho \), this map is injective.

Conversely pick a class \(c\in D_{\varvec{\kappa }}(A[M])\) over \([\rho _0]\in D_{\varvec{\kappa }}(A)\). Then for \(\rho \in c\), we have \(x\in 1+M_2({{\mathfrak {m}}}_{A[M]})\) such that \(x\rho x^{-1}\mod M=\rho _0\). By replacing \(\rho \) by \(x\rho x^{-1}\) and choosing the lifted base, we conclude \({{\mathcal {F}}}(A[M])\cong \{[\rho ]\in D_{\varvec{\kappa }}(A[M])|\rho \mod M\sim \rho _0\}\); so, for finite M,

$$\begin{aligned} {\mathrm {Sel}}(Ad(M))= & {} {{\mathcal {F}}}(A[M])= \{\phi \in {\mathrm {Hom}}_\Lambda -\text {alg}( R,A[M]):\phi \ {\hbox {mod }}M=\iota \}\\= & {} Der_\Lambda ( R,M)\cong {\mathrm {Hom}}_A(\Omega _{ R/\Lambda }\otimes _{ R,\iota }A,M). \end{aligned}$$

Thus

$$\begin{aligned} {\mathrm {Sel}}(Ad(M))\cong {\mathrm {Hom}}_A(\Omega _{ R/\Lambda }\otimes _{ R,\iota }A,M). \end{aligned}$$
(A.2)

Theorem A.1

(B. Mazur). For any \(A\in CL_\Lambda ,\) we have a canonical isomorphism: \({\mathrm {Sel}}(Ad(\rho _0))^\vee \cong \Omega _{R/\Lambda }\otimes _{ R,\iota }A\). In particular,  if \(\rho _0\) is modular with \(\iota \) factoring through \({{\mathbb {T}}},\) we have \({\mathrm {Sel}}(Ad(\rho _0))^\vee ={\mathrm {Sel}}(Ad(\rho _{{\mathbb {T}}}))^\vee \otimes _{{\mathbb {T}}}A\).

The last assertion follows from the transitivity of tensor product:

$$\begin{aligned} {\mathrm {Sel}}(Ad(\rho _{{\mathbb {T}}}))^\vee \otimes _{{\mathbb {T}}}A=\Omega _{R/\Lambda }\otimes _R{{\mathbb {T}}}\otimes _{{\mathbb {T}}}A=\Omega _{R/\Lambda }\otimes _RA={\mathrm {Sel}}(Ad(\rho _0))^\vee . \end{aligned}$$

We only prove the first assertion.

Proof

Take the Pontryagin dual \(A^\vee {:}{=}{\mathrm {Hom}}_B(A,\Lambda ^\vee )={\mathrm {Hom}}_{{{\mathbb {Z}}}_p}(A\otimes _\Lambda \Lambda ,{{\mathbb {Q}}}_p/{{\mathbb {Z}}}_p)={\mathrm {Hom}}(A,{{\mathbb {Q}}}_p/{{\mathbb {Z}}}_p).\) Since \(A=\varprojlim _iA_i\) for finite rings \(A_i\) and \({{\mathbb {Q}}}_p/{{\mathbb {Z}}}_p=\varinjlim _jp^{-1}{{\mathbb {Z}}}/{{\mathbb {Z}}}\), \(A^\vee =\varinjlim _i{\mathrm {Hom}}(A_i,{{\mathbb {Q}}}_p/{{\mathbb {Z}}}_p)=\varinjlim _iA_i^\vee \) is a union of the finite modules \(A_i^\vee \). We define \({\mathrm {Sel}}(Ad(\rho _0)){:}{=}\varinjlim _j{\mathrm {Sel}}(Ad(A_i^\vee ))\). Defining \({{\mathcal {F}}}(A[A^\vee ])=\varinjlim _i{{\mathcal {F}}}_l(A[A_i^\vee ])\), we see from compatibility of cohomology with injective limit

$$\begin{aligned} {\mathrm {Sel}}(Ad(\rho _0))= & {} \varinjlim _i{\mathrm {Sel}}(Ad(A_i^\vee ))\\= & {} \varinjlim _j{\text {Ker}}\left( H^1(G,Ad(A_i^\vee ))\rightarrow \frac{H^1({{\mathbb {Q}}}_p,Ad(A_i^\vee ))}{F^+_-H^1({{\mathbb {Q}}}_p,Ad(A_i^\vee ))}\right) \end{aligned}$$

By the formula (A.2),

$$\begin{aligned} {\mathrm {Sel}}(Ad(\rho _0))= & {} \varinjlim _i{\mathrm {Sel}}(Ad(A_i^\vee ))=\varinjlim _i{\mathrm {Hom}}_{ R}(\Omega _{ R/\Lambda }\otimes _{ R}A,A_i^\vee )\\= & {} {\mathrm {Hom}}_A(\Omega _{ R/\Lambda }\otimes _{ R}A,A^\vee )={\mathrm {Hom}}_A(\Omega _{ R/\Lambda }\otimes _{ R}A,{\mathrm {Hom}}_{{{\mathbb {Z}}}_p}(A,{{\mathbb {Z}}}_p))\\= & {} {\mathrm {Hom}}_{{{\mathbb {Z}}}_p}(\Omega _{ R/\Lambda }\otimes _{ R}A,{{\mathbb {Q}}}_p/{{\mathbb {Z}}}_p)=(\Omega _{ R/\Lambda }\otimes _{ R}A)^\vee . \end{aligned}$$

Taking Pontryagin dual back, we finally get

$$\begin{aligned} {\mathrm {Sel}}(Ad(\rho _0))^\vee \cong \Omega _{ R/\Lambda }\otimes _{ R,\iota }A\text { and }{\mathrm {Sel}}(Ad({{\bar{\rho }}}))^\vee \cong \Omega _{ R/\Lambda }\otimes _{ R}{{\mathbb {F}}}\end{aligned}$$

as desired. In particular, we have \({\mathrm {Sel}}(Ad({\varvec{\rho }}))^\vee =\Omega _{ R/\Lambda }\). \(\square \)

Appendix B. p-Adic adjoint L-function

In [24, §6.5.5], we constructed a p-adic L-function interpolating the size of the adjoint Selmer group \({\mathrm {Sel}}(Ad(\rho ))\) for each specialization \(\rho _P=\rho _{{\mathbb {T}}}\ {\hbox {mod }}P\) with \(P\in {\mathrm {Spec}}(\Lambda )\) for each irreducible component of the form \({\mathrm {Spec}}(\Lambda )\) of \({\mathrm {Spec}}({{\mathbb {T}}})\). Here we generalize this construction of the L-function \(L^\mathrm{mod}=L^\mathrm{mod}_{{\mathbb {I}}}\in {{\mathbb {I}}}\) to general irreducible components \({\mathrm {Spec}}({{\mathbb {I}}})\) of \({\mathrm {Spec}}({{\mathbb {T}}})\) and glue them together to obtain \(L_{{\mathbb {T}}}\in {{\mathbb {T}}}\) having the interpolation property all over \({\mathrm {Spec}}({{\mathbb {T}}})\) (not just over \({\mathrm {Spec}}({{\mathbb {I}}})\)). Here we keep the notation introduced in Section 10, in particular, \((R,{\varvec{\rho }})\) is the minimal universal deformation ring representing \(D_{\varvec{\kappa }}\) and we have a canonical surjective morphism \(\iota _{{\mathbb {T}}}:R\rightarrow {{\mathbb {T}}}\) such that \(\rho _{{\mathbb {T}}}\approx \iota _{{\mathbb {T}}}\circ {\varvec{\rho }}\).

We assume \(R={{\mathbb {T}}}\) and (2.3): \({{\mathbb {T}}}\) has a presentation \({{\mathbb {T}}}=\Lambda [[X_1,\dots ,X_r]/(S_1,\dots ,S_r)\) for \(r=\dim _{{\mathbb {F}}}{\mathrm {Sel}}(Ad({{\bar{\rho }}}))\). Let \(\rho :G\rightarrow {\mathrm {GL}}_2(A)\in D_{\varvec{\kappa }}(A)\) be a deformation of \({{\bar{\rho }}}\) such that \(\rho \cong P\circ \rho _{{\mathbb {T}}}\). We have an exact sequence for \((P:{{\mathbb {T}}}\rightarrow A)\in {\mathrm {Hom}}_\Lambda -\text {alg}({{\mathbb {T}}},A)\)

Then we define

$$\begin{aligned} L_{{\mathbb {T}}}{:}{=}\det \left( \bigoplus _{j=1}^rA\cdot dS_j\xrightarrow {\ell } \bigoplus _{j=1}^r {{\mathbb {T}}}\cdot dX_j\right) . \end{aligned}$$
(B.1)

The element \(L_{{\mathbb {T}}}\) gives rise to a p-adic L-function with

$$\begin{aligned} {\mathrm {Spec}}({{\mathbb {T}}})(W)\ni P\mapsto |L_{{\mathbb {T}}}(P)|_p^{-1}=|{\mathrm {Sel}}(Ad( P\circ {\varvec{\rho }}))|. \end{aligned}$$

Let \(\lambda :{{\mathbb {T}}}={{\mathbb {T}}}\twoheadrightarrow {{\mathbb {I}}}\) be a \(\Lambda \)-algebra surjective homomorphism for an integral domain \({{\mathbb {I}}}\) finite torsion-free over \(\Lambda \). Let \({{\mathbb {T}}}_{{\mathbb {I}}}{:}{=}{{\mathbb {T}}}\otimes _\Lambda {{\mathbb {I}}}\) and \(\tilde{\lambda }\) be the composite \({{\mathbb {T}}}_{{\mathbb {I}}}\twoheadrightarrow {{\mathbb {I}}}\otimes _\Lambda {{\mathbb {I}}}\xrightarrow [\twoheadrightarrow ]{a\otimes b\mapsto ab}{{\mathbb {I}}}\). Then for each \(P\in {\mathrm {Spec}}({{\mathbb {I}}})(W)={\mathrm {Hom}}_\text {W-alg}({{\mathbb {I}}},W)\), \(\tilde{\lambda }\) induces \(\Lambda \hookrightarrow {{\mathbb {T}}}_{{\mathbb {I}}}\xrightarrow {\tilde{\lambda }}{{\mathbb {I}}}\xrightarrow {P} W\) by composition.

Writing \(\rho _P{:}{=}P\circ \lambda \circ {\varvec{\rho }}\). Then \(\det \rho _P\) is a deformation of \(\det {{\bar{\rho }}}\); so, we have a unique morphism \(\iota _P:\Lambda \rightarrow W\) such that \(\iota _P\circ \kappa =\det (\rho _P)\). Since the \(\Lambda \)-algebra structure \(\iota :\Lambda \rightarrow {{\mathbb {T}}}\) of \({{\mathbb {T}}}={{\mathbb {T}}}\) is given by \(\det ({\varvec{\rho }})=\det (\rho _{{\mathbb {T}}})=\iota \circ \kappa \), we find out that the above composite is just \(\iota _P\).

Let \({{\mathbb {T}}}_P={{\mathbb {T}}}_{{\mathbb {I}}}\otimes _{{{\mathbb {I}}},P}W\) under the above algebra homomorphism. Note that

$$\begin{aligned} {{\mathbb {T}}}_P={{\mathbb {T}}}\otimes _\Lambda {{\mathbb {I}}}\otimes _{{{\mathbb {I}}},P} W\cong {{\mathbb {T}}}\otimes _{\Lambda ,\iota _P} W \end{aligned}$$

by associativity of tensor product.

By construction, we have \(\lambda _P:{{\mathbb {T}}}_P\rightarrow W\) induced by \(\lambda \). Even if \(\iota _P=\iota _{P'}\), \(\lambda _P\) may be different from \(\lambda _{P'}\). If \(\lambda _P\) is associated to a Hecke eigenform of weight \(\ge 2\), we call P a arithmetic point. If \({{\mathbb {T}}}_P\otimes _W{\text {Frac}}(W)={\text {Frac}}(W)\oplus ({\text {Ker}}(\lambda _P)\otimes _W{\text {Frac}}(W))\) as algebra direct sum, we call P admissible. If P is admissible, write \(S_P\) for the image of \({{\mathbb {T}}}_P\) in \(({\text {Ker}}(\lambda _P)\otimes _W{\text {Frac}}(W))\). Then define the congruence module \(C_0(\lambda _P){:}{=}S_P\otimes _{{{\mathbb {T}}}_P,\lambda _P}W\). If P is arithmetic, it is admissible. Since \({{\mathbb {T}}}_{{\mathbb {I}}}\) is a complete intersection over \({{\mathbb {I}}}\), by a theorem of Tate (see [33, Appendix] or [24, Theorem 6.8]),

$$\begin{aligned} |C_0(\lambda _P)|=|\Omega _{{{\mathbb {T}}}_{{\mathbb {I}}}/{{\mathbb {I}}}}\otimes _{{{\mathbb {T}}}_{{\mathbb {I}}}}{{\mathbb {I}}}/P|=|\Omega _{{{\mathbb {T}}}/\Lambda }\otimes _{{\mathbb {T}}}{{\mathbb {I}}}/P|. \end{aligned}$$
(B.2)

If \(\rho \in D_{\varvec{\kappa }}(A)\) for W-valued \(\kappa =\det (\rho _P)\), then \(\rho \in D_{\varvec{\kappa }}(A)\) and hence \(\rho =\phi \circ {\varvec{\rho }}\) for \(\phi :{{\mathbb {T}}}\rightarrow A\). By definition, \(\phi \) factors through

$$\begin{aligned} {{\mathbb {T}}}/R(\det ({\varvec{\rho }})(g)-\kappa (g))_gR={{\mathbb {T}}}/R(\kappa (g)-\kappa (g))_gR=R\otimes _{\Lambda ,\kappa }W. \end{aligned}$$

This shows that \({{\mathbb {T}}}=R\otimes _{\Lambda ,\kappa }W\) for \(\kappa :\Lambda =W[[\Gamma ]]\rightarrow W\) induced by \(\kappa \). Applying this to \({{\mathbb {T}}}_P\), we get \(R_{\det (\rho _P)}={{\mathbb {T}}}_P\).

Here is a well known theorem (a combination of (2.3) and an old result of mine [21]) which shows non-vanishing at arithmetic P of the p-adic L-function \(L_{{\mathbb {T}}}\) interpolating the size of adjoint Selmer group over \({\mathrm {Spec}}({{\mathbb {T}}})\) (e.g., [19, §5.3.6]) for canonical periods \(\Omega _{f,\pm }\) of f:

Theorem B.1

Assume \(R={{\mathbb {T}}}\) and (2.3). Let \(\lambda :{{\mathbb {T}}}\twoheadrightarrow {{\mathbb {I}}}\) be a surjective \(\Lambda \)-algebra homomorphism for a domain \({{\mathbb {I}}}\) containing \(\Lambda \) and \(\tilde{\lambda }:{{\mathbb {T}}}_{{\mathbb {I}}}\rightarrow {{\mathbb {I}}}\) be its scalar extension to \({{\mathbb {I}}}\). Then there exists \(L_{{\mathbb {I}}}\in {{\mathbb {I}}}\) such that \(C_0(\lambda )={{\mathbb {I}}}/(L_{{\mathbb {I}}})\) and for each admissible \(P\in {\mathrm {Spec}}({{\mathbb {I}}}),\) \(C_0(\lambda _P)=W/P(\lambda (L_{{\mathbb {I}}}))\) and if \(P\circ \lambda \circ \rho _{{\mathbb {T}}}\cong \rho _f\) for a modular form of weight \(\ge 2,\) we have \(|{\mathrm {Sel}}(Ad(\rho _P)|=|C_0(\lambda _P)|=|W/L_{{\mathbb {I}}}(P)|=|\frac{L(1,Ad(\rho _f))}{\Omega _{f,+}\Omega _{f,-}}|_p^{-1}<\infty \) (so, \(L_{{\mathbb {I}}}(P)\ne 0\) \(),\) where \(L_{{\mathbb {I}}}(P){:}{=}P(\lambda (L_{{\mathbb {I}}}))\).

By (B.2), we need to prove only \(|C_0(\lambda _P)|=|W/P(\lambda (L_{{\mathbb {I}}}))|=|\frac{L(1,Ad(\rho _f))}{\Omega _{f,+}\Omega _{f,-}}|_p^{-1}\). If f is of weight 2 on a modular curve X, for \({{\mathcal {W}}}=W\cap {\bar{{{\mathbb {Q}}}}}\), we have \(H^1(X,{{\mathcal {W}}})[\lambda _P]={{\mathcal {W}}}\omega _+(f)\oplus {{\mathcal {W}}}\omega _-(f)\) (±-eigenspace under the pull-back action of \(z\mapsto -\bar{z}\) on the upper half complex plane) and \(H^1(X,{{\mathbb {C}}})={{\mathbb {C}}}\delta _+(f)+{{\mathbb {C}}}\delta _-(f)\) for \(\delta _\pm f=f(z)dz\mp f(-\bar{z})d\bar{z}\). Then \(\Omega _{f,\pm }\omega _\pm (f)=\delta _\pm (f)\). We use Eichler–Shimura isomorphism to define \(\Omega _{f,\pm }\) for higher weight (see [24, Theorem 6.28] for details).

Since \(L_{{\mathbb {I}}}(P)\ne 0\) is a key to show local indecomposability of modular Galois representation (Theorem C), we give a sketch of a proof of the non-vanishing in two steps.

Proof

Step 1: Existence of \(L_{{\mathbb {I}}}\). Write \(M^*{:}{=}{\mathrm {Hom}}_{{\mathbb {I}}}(M,{{\mathbb {I}}})\) for an \({{\mathbb {I}}}\)-module M. Let S be the image of \({{\mathbb {T}}}_{{\mathbb {I}}}\) in \({{\mathfrak {B}}}\otimes _{{\mathbb {I}}}{\text {Frac}}({{\mathbb {I}}})\) for \({{\mathfrak {B}}}={\text {Ker}}(\tilde{\lambda })\) in the decomposition \({{\mathbb {T}}}\otimes _\Lambda {\text {Frac}}({{\mathbb {I}}})={\text {Frac}}({{\mathbb {I}}})\oplus ({{\mathfrak {B}}}\otimes _{{\mathbb {I}}}{\text {Frac}}({{\mathbb {I}}}))\). Let \(\mu :{{\mathbb {T}}}_{{\mathbb {I}}}\rightarrow S\) be the projection and put \({{\mathfrak {A}}}={\text {Ker}}(\mu )\). So we have a split exact sequence \({{\mathfrak {B}}}\hookrightarrow {{\mathbb {T}}}_{{\mathbb {I}}}\twoheadrightarrow {{\mathbb {I}}}\). A local complete intersection \({{\mathbb {T}}}_{{\mathbb {I}}}\) over \({{\mathbb {I}}}\) has such a self-dual pairing \((\cdot ,\cdot )\) with values in \({{\mathbb {I}}}\) such that \((xy,z)=(x,yz)\) for \(x,y,z\in {{\mathbb {T}}}_{{\mathbb {I}}}\). Thus \({{\mathfrak {B}}}^*\cong {{\mathbb {T}}}_{{\mathbb {I}}}^*/{{\mathbb {I}}}^*\), and \({{\mathbb {I}}}^*\subset {{\mathbb {T}}}_{{\mathbb {I}}}={{\mathbb {T}}}_{{\mathbb {I}}}^*\) is a maximal submodule of \({{\mathbb {T}}}_{{\mathbb {I}}}\) on which \({{\mathbb {T}}}_{{\mathbb {I}}}\) acts through \(\tilde{\lambda }\); so, \({{\mathbb {I}}}^*={{\mathfrak {A}}}\) inside \({{\mathbb {T}}}_{{\mathbb {I}}}\). This implies \({{\mathfrak {B}}}^*\cong S\); so, S is \({{\mathbb {I}}}\)-free. In other words, applying \({{\mathbb {I}}}\)-dual, we get a reverse exact sequence

This shows \(?={{\mathfrak {A}}}\cong {{\mathbb {I}}}^*\cong {{\mathbb {I}}}\); so, \({{\mathfrak {A}}}\) is principal. Define \(L_{{\mathbb {I}}}\in {{\mathbb {I}}}\) by \({{\mathfrak {A}}}=(L_{{\mathbb {I}}})\). Note that \(C_0(\tilde{\lambda })={{\mathbb {I}}}/{{\mathfrak {A}}}\).

Step 2: Specialization property. We have \({{\mathfrak {B}}}^*=S\) and a split exact sequence \({{\mathfrak {B}}}\rightarrow {{\mathbb {T}}}_{{\mathbb {I}}}\rightarrow {{\mathbb {I}}}\); so, \({{\mathfrak {B}}}\) is an \({{\mathbb {I}}}\)-direct summand of \({{\mathbb {T}}}_{{\mathbb {I}}}\). Tensoring W over \({{\mathbb {I}}}\) via P, \({{\mathfrak {B}}}\otimes _{{{\mathbb {I}}},P}W\rightarrow {{\mathbb {T}}}_P\rightarrow W\) is exact, and we get \({{\mathfrak {B}}}_P={{\mathfrak {B}}}\otimes _{{{\mathbb {I}}},P}W={\text {Ker}}(\lambda _P)\). Since \({{\mathbb {T}}}\) is \(\Lambda \)-free of finite rank, \({{\mathbb {T}}}_{{\mathbb {I}}}\) is \({{\mathbb {I}}}\)-free of finite rank. Thus \({{\mathfrak {B}}}\) is \({{\mathbb {I}}}\)-projective and hence \({{\mathbb {I}}}\)-free; so, \(S\cong {{\mathfrak {B}}}^*\) is \({{\mathbb {I}}}\)-free. Tensoring W over \({{\mathbb {I}}}\) via P, we get

$$\begin{aligned} 0\rightarrow {{\mathfrak {A}}}\otimes _{{{\mathbb {I}}},P}W\rightarrow {{\mathbb {T}}}_P\rightarrow S\otimes _{{{\mathbb {I}}},P}W\rightarrow 0. \end{aligned}$$

Thus if P is admissible, \(S_P{:}{=}S\otimes _{{{\mathbb {I}}},\lambda _P}W\) gives rise to the decomposition: \({{\mathbb {T}}}_P\otimes _W{\text {Frac}}(W)={\text {Frac}}(W)\oplus (S_P\otimes _W{\text {Frac}}(W))\). By \({{\mathfrak {B}}}_P={{\mathfrak {B}}}_P\otimes _{{{\mathbb {I}}},P}W={\text {Ker}}(\lambda _P)\), we get \(C_0(\lambda _P)=S_P/{{\mathfrak {B}}}_P=(S/{{\mathfrak {B}}})\otimes _{{{\mathbb {I}}},P}W=C_0(\tilde{\lambda })\otimes _{{{\mathbb {I}}},P}W\), as desired. \(\square \)

Tensoring \({{\mathbb {I}}}\) with the exact sequence of \({{\mathbb {T}}}\)-modules:

$$\begin{aligned} (S_1,\dots ,S_r)/(S_1,\dots ,S_r)^2\xrightarrow {f\mapsto df}\Omega _{\Lambda [[X_1,\dots ,X_r]]/\Lambda }\otimes _{\Lambda [[X_1,\dots ,X_r]]}{{\mathbb {T}}}\twoheadrightarrow \Omega _{{{\mathbb {T}}}/\Lambda } \end{aligned}$$

over \({{\mathbb {T}}}\), we get an exact sequence \(\bigoplus _j{{\mathbb {I}}}dS_j\xrightarrow {d\otimes 1=\lambda (d)}\bigoplus _j{{\mathbb {I}}}dX_j\rightarrow \Omega _{{{\mathbb {T}}}/\Lambda }\otimes _{{{\mathbb {T}}},\lambda }{{\mathbb {I}}}\rightarrow 0.\) Since \({{\mathbb {T}}}_{{\mathbb {I}}}={{\mathbb {I}}}[[X_1,\dots ,X_r]]/(S_1,\dots ,S_r)_{{\mathbb {I}}}\), we have

$$\begin{aligned} \Omega _{{{\mathbb {T}}}_{{\mathbb {I}}}/{{\mathbb {I}}}}\otimes _{{{\mathbb {T}}}_{{\mathbb {I}}},\tilde{\lambda }}{{\mathbb {I}}}=\bigoplus _j{{\mathbb {I}}}dX_j/\bigoplus _j{{\mathbb {I}}}dS_j=\Omega _{{{\mathbb {T}}}/\Lambda }\otimes _{{{\mathbb {T}}},\lambda }{{\mathbb {I}}}. \end{aligned}$$

They have the same characteristic ideals (and Fitting ideals) by Tate’s theorem [24, Theorem 6.8]. Thus in general, we get

$$\begin{aligned} (\lambda (L_{{\mathbb {T}}}))&=(\lambda (\det (d)))=(\det (d\otimes 1))={\text {char}}(\Omega _{{{\mathbb {T}}}_{{\mathbb {I}}}/{{\mathbb {I}}}}\otimes _{{{\mathbb {T}}}_{{\mathbb {I}}},\tilde{\lambda }}{{\mathbb {I}}})\\&{\mathop {=}\limits ^{\text {Tate}}}{\text {char}}(C_0(\tilde{\lambda }))=(L_{{\mathbb {I}}}). \end{aligned}$$

Thus we obtain the following.

COROLLARY B.2

Let the notation and assumption be as in Theorem B.1. Then \(\lambda (L_{{\mathbb {T}}})=L_{{\mathbb {I}}}\) up to units in \({{\mathbb {I}}},\) and if \(P\in {\mathrm {Spec}}({{\mathbb {T}}})({\bar{{{\mathbb {Q}}}}}_p)\) satisfies \(P\circ \lambda \circ \rho _{{\mathbb {T}}}\cong \rho _f\) for a modular form f of weight \(\ge 2,\) we have \(|{\mathrm {Sel}}(Ad(\rho _P)|=|C_0(\lambda _P)|=|W/L_{{\mathbb {T}}}(P)| =|\frac{L(1,Ad(\rho _f))}{\Omega _{f,+}\Omega _{f,-}}|_p^{-1}<\infty \) (so, \(L_{{\mathbb {T}}}(P)\ne 0\)), where \(L_{{\mathbb {T}}}(P){:}{=}P(\lambda (L_{{\mathbb {T}}}))\).

The corollary tells us that \(L_{\mathrm{mod}}\in {{\mathbb {I}}}\) glues (up to units) well to \(L_{{\mathbb {T}}}\) so that the image \(\lambda (L_{{\mathbb {T}}})\) of \(L_{{\mathbb {T}}}\) in \({{\mathbb {I}}}\) is equal to \(L_{{\mathbb {I}}}\) of \({{\mathbb {I}}}\) up to units, and in particular, \(L_{{\mathbb {T}}}(P)\ne 0\) if P is an arithmetic point.

Appendix C. Action of \(\sigma \) on Selmer groups

In this last section, we assume that \({{\bar{\rho }}}={\text {Ind}}_F^{{\mathbb {Q}}}\varphi \) for a real quadratic field F. We identify the “\(+\)”-eigenspace \({\mathrm {Sel}}^+(Ad(\rho _{{\mathbb {T}}}))^\vee \) under the action of \(\sigma \) with \(\Omega _{{{\mathbb {T}}}_+/\Lambda }\). We need a general facts on relative dualizing modules. Let B be a commutative p-profinite local ring for a prime \(p>2\). Consider a local B-algebra A finite over B with \(B\hookrightarrow A\). Write \(\omega _{A/B}\) for the dualizing module for the finite (hence proper) morphism \(X{:}{=}{\mathrm {Spec}}(A)\xrightarrow {f}{\mathrm {Spec}}(B){=}{:}Y\) if it exists (in the sense of [29, (6)]). For the dualizing functor \(f^!\) from quasi coherent Y-sheaves into quasi coherent X-sheaves defined in [29, (2)], we have \({\mathrm {Hom}}_A(F,f^!N)={\mathrm {Hom}}_B(f_*F,N)\) for any quasi-coherent sheaves F over X and N over Y; so, if \(\omega _{A/B}\) exists (i.e., \(f^!(N)=N\otimes _B\omega _{A/B}\)), taking \(F=A\) and \(N=B\), we have \(\omega _{A/B}=f^!({{\mathcal {O}}}_Y)={\mathrm {Hom}}_B(A,B)\) as A-modules. As shown in [29, (21)], \({\mathrm {Spec}}(A)\xrightarrow {f}{\mathrm {Spec}}(B)\) has dualizing module if and only if f is Cohen Macaulay (e.g., if B is regular and A is free of finite rank over B). Even if we do not have dualizing module \(\omega _{A/B}\), we just define \(\omega _{A/B}{:}{=}{\mathrm {Hom}}_B(A,B)\) generally.

Suppose that we have an involution \(\sigma \in {\text {Aut}}(A/B)\). Let \(A_+=A^{{\mathcal {G}}}\) for the order 2 subgroup \({{\mathcal {G}}}\) of \({\text {Aut}}(A/B)\) generated by \(\sigma \). Under the following four conditions:

  1. (1)

    B is a regular local ring,

  2. (2)

    A is free of finite rank over B,

  3. (3)

    A and \(A_+\) are Gorenstein ring,

  4. (4)

    A/B is generically étale (i.e., \({\text {Frac}}(A)\) is reduced separable over \({\text {Frac}}(B)\)),

in [31, §3.5.a], the module of regular differentials \(\omega _{\square /\triangle }\) for \((\square ,\triangle )=(A,B), (A,A_+), (A_+,B)\) is defined as fractional ideals in \({\text {Frac}}(\square )\). By (1) and (2), A/B and \(A_+/B\) are Cohen Macaulay; so, \(\omega _{A/B}\) and \(\omega _{A_+/B}\) as above are the dualizing modules.

We now identify the dualizing module with classical “inverse different”. Let \(C\supset B\) be reduced algebras. By abusing notation, write \(\omega _{C/B}{:}{=}{\mathrm {Hom}}_B(C,B)\) in general. Suppose that \({\text {Frac}}(C)/{\text {Frac}}(B)\) is étale to have a trace map \({\mathrm {Tr}}:{\text {Frac}}(C)\rightarrow {\text {Frac}}(B)\), and \(\omega _{{\text {Frac}}(C)/{\text {Frac}}(B)}={\text {Frac}}(C){\mathrm {Tr}}\) by the trace pairing \((x,y)\mapsto {\mathrm {Tr}}(xy)\). We define a C-fractional ideal (called the inverse different for C/B) by

$$\begin{aligned} {{\mathfrak {d}}}^{-1}_{C/B}{:}{=}\{x\in C |{\mathrm {Tr}}(xC)\subset B\}. \end{aligned}$$

In other words, \(\omega _{C/B}={\mathrm {Hom}}_B(C,B)\hookrightarrow {\mathrm {Hom}}_{{\text {Frac}}(B})({\text {Frac}}(C),{\text {Frac}}(B))={\text {Frac}}(C){\mathrm {Tr}}\) has image \({{\mathfrak {d}}}_{C/B}^{-1}{\mathrm {Tr}}\). Thus we have \({{\mathfrak {d}}}^{-1}_{C/B}\cong \omega _{C/B}\). If \(C=B[\delta ]\) is free of rank 2 over B with an B-basis \(1,\delta \) with \(\delta ^2\in B\), we have \({{\mathfrak {d}}}^{-1}_{C/B}=\delta ^{-1}C\) for \(\delta ^{-1}\in {\text {Frac}}(C)\). Here is a version of Dedekind’s formula of transitivity of inverse differents proven in [30, Proposition G.13] (see also [29, (26) (vii)]).

PROPOSITION C.1

Let B be a regular p-profinite local ring. Suppose that D/C/B is generically étale finite extensions of reduced algebras such that D and C are B-flat, \(\omega _{C/B}\cong C\) as C-modules (i.e., C is Gorenstein) and that \({\text {Frac}}(D)\) is \({\text {Frac}}(C)\)-free. Then we have \({{\mathfrak {d}}}^{-1}_{D/C}{{\mathfrak {d}}}^{-1}_{C/B}={{\mathfrak {d}}}^{-1}_{D/B}\) and \(\omega _{D/C}\otimes _C\omega _{C/B}\cong \omega _{D/B}.\)

We now prove the following.

Theorem C.2

Let \({\mathrm {Sel}}^+(Ad(\rho _{{\mathbb {T}}})){:}{=}\{x\in {\mathrm {Sel}}(Ad(\rho _{{\mathbb {T}}}))|\sigma (x)=x\}\), and suppose (H0)–(H2). Then we have a canonical isomorphism \(\Omega _{{{\mathbb {T}}}_+/\Lambda }\cong {\mathrm {Sel}}^+(Ad(\rho _{{\mathbb {T}}}))^\vee \).

Proof

By Corollary 3.7(1), we can apply Proposition C.1 to \(B=\Lambda ,\) \(D={{\mathbb {T}}}\) and \(C={{\mathbb {T}}}_+\). We have the first fundamental exact sequence [32, Theorem 25.1]:

$$\begin{aligned} \Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}}\xrightarrow {i}\Omega _{{{\mathbb {T}}}/\Lambda }\rightarrow \Omega _{{{\mathbb {T}}}/{{\mathbb {T}}}_+}\rightarrow 0. \end{aligned}$$
(C.1)

We can choose \(\Theta \in {{\mathbb {T}}}\) which is the image in \({{\mathbb {T}}}\) of X in Theorem 2.2 so that \(\sigma (\Theta )=-\Theta \) as \({{\mathbb {T}}}/I\) is a surjective image of \(\Lambda \) and I is generated by \({{\mathbb {T}}}_-\). Then \({{\mathbb {T}}}_+=\Lambda [\Theta ^2]\), which is a local complete intersection (so, Gorenstein). Thus we get from Proposition C.1, \({{\mathfrak {d}}}_{{{\mathbb {T}}}/{{\mathbb {T}}}_+}{{\mathfrak {d}}}_{{{\mathbb {T}}}_+/\Lambda }={{\mathfrak {d}}}_{{{\mathbb {T}}}/\Lambda }\). By Tate’s theorem [33, Appendix, (A.3)] or [24, §6.3.3], \({{\mathfrak {d}}}_{X/Y}={\text {Fitt}}_X(\Omega _{X/Y})\) for any subset \(\{X,Y\}\subset \{{{\mathbb {T}}},{{\mathbb {T}}}_+,\Lambda \}\) with \(X\supset Y\) and \({{\mathfrak {d}}}_{{{\mathbb {T}}}_+/\Lambda }{{\mathbb {T}}}={\text {Fitt}}_{{\mathbb {T}}}(\Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}})\), writing \({\text {Fitt}}(M)\) for the Fitting ideal of a \({{\mathbb {T}}}\)-module M of finite type (see [34, Appendix] for a concise description of the theory of Fitting ideal). Since \(X_{/Y}\) is a relative local complete intersection, \({{\mathfrak {d}}}_{X/Y}\) is a principal ideal generated by a non-zero divisor again by Tate’s theorem.

Suppose relative complete intersection property: \(X=Y[[(T)]]/(S)\) for a set of variable \((T){:}{=}(T_1,\dots ,T_r)\) and a regular sequence \((S){:}{=}(S_1,\dots ,S_r)\subset {{\mathfrak {m}}}_{Y[[(T)]]}\) with X free of finite rank over Y. Then we have the following commutative diagram with exact rows:

Thus \({\text {Fitt}}(\Omega _{X/Y})=(\det (\ell ))\) and hence \({\text {Fitt}}(\Omega _{X/Y})\) kills \(\Omega _{X/Y}\). If \(M\hookrightarrow L\twoheadrightarrow N\) is an exact sequence of \({{\mathbb {T}}}\)-modules, we have \({\text {Fitt}}(M){\text {Fitt}}(N)\subset {\text {Fitt}}(L)\) and \({\text {Fitt}}(N)\supset {\text {Fitt}}(L)\) [34, Appendix, 1, 9]. By (C.1), \({\text {Fitt}}({\text {Im}}(i)){\text {Fitt}}(\Omega _{{{\mathbb {T}}}/{{\mathbb {T}}}_+})\subset {\text {Fitt}}(\Omega _{{{\mathbb {T}}}/\Lambda })\) and \({\text {Fitt}}({\text {Ker}}(i)){\text {Fitt}}({\text {Im}}(i))\subset {\text {Fitt}}(\Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}})\). Since \({{\mathfrak {d}}}_{X/Y}\) is a principal ideal generated by a non-zero divisor (as already remarked), the identity \({{\mathfrak {d}}}_{{{\mathbb {T}}}/{{\mathbb {T}}}_+}{{\mathfrak {d}}}_{{{\mathbb {T}}}_+/\Lambda }={{\mathfrak {d}}}_{{{\mathbb {T}}}/\Lambda }\) then implies \({\text {Fitt}}({\text {Im}}(i))={\text {Fitt}}(\Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}})\). Therefore \({\text {Fitt}}({\text {Ker}}(i))={{\mathbb {T}}}\); so, \({\text {Ker}}(i)\) is killed by \(1\in {{\mathbb {T}}}\), and i is an injection, and (C.1) is a short exact sequence.

For a module M with \(\sigma \)-action, we write \(M^+{:}{=}\{x\in M|\sigma (x)=x\}\). Since \({{\mathbb {T}}}\cong {{\mathbb {T}}}_+[X]/(X^2-\theta )\) for \(\theta {:}{=}\Theta ^2\) by Corollary 3.7(1), \(\sigma \) acts on \(\Omega _{{{\mathbb {T}}}/{{\mathbb {T}}}_+}\cong ({{\mathbb {T}}}/(\Theta )) d\theta \) by \(-1\). Thus by taking “\(+\)”-eigenspace of the exact sequence \(\Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}}\hookrightarrow \Omega _{{{\mathbb {T}}}/\Lambda }\twoheadrightarrow \Omega _{{{\mathbb {T}}}/{{\mathbb {T}}}_+}\), we get an isomorphism: \(\Omega _{{{\mathbb {T}}}_+/\Lambda }\cong \Omega _{{{\mathbb {T}}}/\Lambda }^+\), because \(\Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}}=\Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}}_+\oplus \Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}}_-\) with \(\Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}}_+=\Omega _{{{\mathbb {T}}}_+/\Lambda }=(\Omega _{{{\mathbb {T}}}_+/\Lambda }\otimes _{{{\mathbb {T}}}_+}{{\mathbb {T}}})^+\). Since \({\mathrm {Sel}}(Ad(\rho _{{\mathbb {T}}}))^\vee \cong \Omega _{{{\mathbb {T}}}/\Lambda }\) by \(R\cong {{\mathbb {T}}}\) (see Theorem A.1), we get the desired identity by taking “\(+\)” eigenspace of \(\sigma \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hida, H. The universal ordinary deformation ring associated to a real quadratic field. Proc Math Sci 132, 17 (2022). https://doi.org/10.1007/s12044-021-00653-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-021-00653-4

Keywords

1991 Mathematics Subject Classification

Navigation