Skip to main content
Log in

Geometry of certain Brill–Noether locus on a very general sextic surface and Ulrich bundles

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let \(X \subset {\mathbb {P}}^3\) be a very general sextic surface over complex numbers. In this paper, we study certain Brill–Noether problems for moduli of rank 2 stable bundles on X and its relation with rank 2 weakly Ulrich and Ulrich bundles. In particular, we show the non-emptiness of certain Brill–Noether loci and using the geometry of the moduli and the notion of the Petri map on higher dimensional varieties, we prove the existence of components of expected dimension. We also give sufficient conditions for the existence of rank 2 weakly Ulrich bundles \({\mathcal {E}}\) on X with \(c_1({\mathcal {E}}) =5H\) and \(c_2 \ge 91\) and partially address the question of whether these conditions really hold. We then study the possible implication of the existence of an weakly Ulrich bundle in terms of non-emptiness of Brill–Noether loci. Finally, using the existence of rank 2 Ulrich bundles on X we obtain some more non-empty Brill–Noether loci and investigate the possibility of existence of higher rank simple Ulrich bundles on X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A smooth projective variety \(X \subseteq {\mathbb {P}}^n\) is called ACM (Arithmetically Cohen–Macaulay) if its homogeneous coordinate ring \(S_X\) is Cohen–Macaulay, or equivalently, if \(\text {dim}(S_X) = \text {depth}(S_X)\).

  2. A vector bundle \({\mathcal {E}}\) on a projective variety X is ACM if all its intermediate cohomologies vanishes, i.e., \(H^i(X, {\mathcal {E}}(m)) = 0\) for \(0<i <\mathrm{dim}(X)\) and all \(m \in {\mathbb {Z}}\).

  3. We say that \(X \subset {\mathbb {P}}^3\) of degree d can be defined by a linear pfaffian if there exists a \((2d)\times (2d)\) skew symmetric matrix M with linear entries such that \(X =\{\mathrm{pf}(M)=0\} \subset {\mathbb {P}}^3\).

  4. This can be seen using cohomological equivalences mentioned in Section 2 and the fact that if a line bundle has negative degree then it has no non-trivial global section.

  5. It is easy to see the following:

    • if \({\mathcal {E}}\) is a rank 2, \(\mu _H\)-stable vector bundle, then so is \({\mathcal {E}} \otimes {\mathcal {O}}_X(-2)\).

    • if \(c_1({\mathcal {E}}) = 5H, c_2({\mathcal {E}}) = c_2\), then using results from Section 2 we have \(c_1({\mathcal {E}} \otimes {\mathcal {O}}_X(-2)) = 5H-4H =H, c_2({\mathcal {E}} \otimes {\mathcal {O}}_X(-2)) = c_2 -36\).

    • the map in the opposite direction is given by \({\mathcal {F}} \mapsto {\mathcal {F}} \otimes {\mathcal {O}}_X(2)\), which makes f an isomorphism.

  6. This is because the trace free part is self dual, i.e., \(\mathrm{End}^0({\mathcal {G}})^* \cong \mathrm{End}^0({\mathcal {G}})\).

  7. Existence of such an \({\mathcal {E}}\) is guaranteed by Proposition 5.1.

  8. Indeed we have \(H^0({\mathcal {E}}^*_1 \otimes {\mathcal {E}}_2) \cong \mathrm{Hom}(\mathcal {E}_1 , {\mathcal {E}}_2)\) and it can be shown that both \({\mathcal {E}}_1, {\mathcal {E}}_2\) are of same slope 15. Therefore, there can be no non-trivial morphism between \({\mathcal {E}}_1\) and \({\mathcal {E}}_2\).

References

  1. Aprodu M and Farkas G, Green’s conjecture for curves on arbitrary K3 surfaces, Compos. Math. 147(3) (2011) 839–851

    Article  MathSciNet  Google Scholar 

  2. Arbarello E, Cornalba M, Griffiths P A and Harris J, Geometry of Algebraic Curves, Vol. I, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) 267 (1985) (New York: Springer-Verlag)

  3. Basili B, Indice de Clifford des intersections complètes de l’espace (French); Clifford index of complete intersections in space, Bull. Soc. Math. France 124(1) (1996) 61–95

    Article  MathSciNet  Google Scholar 

  4. Beauville A, An introduction to Ulrich bundles, Eur. J. Math. 4(1) (2018) 26–36

    Article  MathSciNet  Google Scholar 

  5. Beauville A, Determinantal hypersurfaces, dedicated to William Fulton on the occasion of his 60th birthday, Michigan Math. J. 48 (2000) 39–64

    Article  MathSciNet  Google Scholar 

  6. Bhattacharya D and Pal S, Geometry of some moduli of bundles over a very general sextic surface for small second Chern classes and Mestrano–Simpson conjecture, arXiv preprint: arXiv:2003.06146 (2020)

  7. Casanellas M, Hartshorne R, Geiss F and Schreyer F-O, Stable Ulrich bundles, Int. J. Math. 23(8) (2012) 1250083

    Article  MathSciNet  Google Scholar 

  8. Casnati G, Examples of smooth surfaces in \({\mathbb{P}}^3\) which are Ulrich-wild, Bull. Korean Math. Soc. 54(2) (2017) 667–677

    Article  MathSciNet  Google Scholar 

  9. Chiantini L and Faenzi D, Rank 2 arithmetically Cohen–Macaulay bundles on a general quintic surface, Math. Nachr. 282(12) (2009) 1691–1708

    Article  MathSciNet  Google Scholar 

  10. Coskun E, A survey of Ulrich bundles, Analytic and algebraic geometry, (2017) (New Delhi: Hindustan Book Agency) pp. 85–106

  11. Coskun E, Ulrich bundles on quartic surfaces with Picard number 1, C. R. Math. Acad. Sci. Paris 351(5-6) (2013) 221–224

    Article  MathSciNet  Google Scholar 

  12. Coskun E, Kulkarni R S and Mustopa Y, On representations of Clifford algebras of ternary cubic forms, New Trends in Noncommutative Algebra, Contemp. Math., Amer. Math. Soc., Providence, RI, vol. 562 (2012) pp. 91–99

  13. Coskun E, Kulkarni R S and Mustopa Y, Pfaffian quartic surfaces and representations of Clifford algebras, Doc. Math. 17 (2012) 1003–1028

    MathSciNet  MATH  Google Scholar 

  14. Coskun E, Kulkarni R S and Mustopa Y, The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra 375 (2013) 280–301

    Article  MathSciNet  Google Scholar 

  15. Costa L and Miró-Roig R M, Brill–Noether theory for moduli spaces of sheaves on algebraic varieties, Forum Math. 22(3) (2010) 411–432

    Article  MathSciNet  Google Scholar 

  16. Costa L and Miró-Roig R M, Brill–Noether theory on Hirzebruch surfaces, J. Pure Appl. Algebra 214(9) (2010) 1612–1622

    Article  MathSciNet  Google Scholar 

  17. Dan K and Pal S, Non-emptiness of Brill–Noether loci over very general quintic hypersurface, Bull. Sci. Math. 147 (2018) 83–91

    Article  MathSciNet  Google Scholar 

  18. Eisenbud D, Schreyer F-O and Weyman J, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc. 16(3) (2003) 537–579

    Article  MathSciNet  Google Scholar 

  19. Göttsche L, Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lecture Notes in Mathematics, 1572 (1994) (Berlin: Springer-Verlag)

  20. Göttsche L and Hirschowitz A, Weak Brill–Noether for vector bundles on the projective plane, Algebraic Geometry (Catania, 1993/Barcelona, 1994) Lecture Notes in Pure and Appl. Math. (1998) (New York: Dekker) vol. 200, pp. 63–74

  21. Griffiths P and Harris J, On the Noether–Lefschetz theorem and some remarks on codimension-two cycles, Math. Ann. 271(1) (1985) 31–51

    Article  MathSciNet  Google Scholar 

  22. Grzegorczyk I and Teixidor i Bigas M, Brill–Noether theory for stable vector bundles, Moduli spaces and vector bundles, London Math. Soc. Lecture Note Ser., 359 (2009) (Cambridge: Cambridge Univ. Press) pp. 29–50

  23. Harris J., Algebraic geometry. A first course, corrected reprint of the 1992 original, Graduate Texts in Mathematics, vol. 133 (1995). (New York: Springer-Verlag)

  24. Hartshorne R, Algebraic geometry. Graduate Texts in Mathematics, vol. 52 (1977) (New York-Heidelberg: Springer-Verlag)

  25. He M, Espaces de modules de systèmes cohérents (French); Moduli spaces of coherent systems, Internat. J. Math. 9(5) (1998) 545–598

    Article  MathSciNet  Google Scholar 

  26. Huybrechts D and Lehn M, The geometry of moduli spaces of sheaves, second edition, Cambridge Mathematical Library (2010) (Cambeidge: Cambridge University Press)

  27. Keem C, Double coverings of smooth algebraic curves, Algebraic geometry in East Asia (Kyoto, 2001), World Sci. Publ., River Edge, NJ (2002) pp. 75–111

  28. Le Potier J, Systèmes cohérents et structures de niveau (French); Coherent systems and level structures, Astérisqué 214 (1993) 143

    MATH  Google Scholar 

  29. Leyenson M, On the Brill–Noether theory for K3 surfaces, Cent. Eur. J. Math. 10(4) (2012) 1486–1540

    Article  MathSciNet  Google Scholar 

  30. Markman E, Brill–Noether duality for moduli spaces of sheaves on K3 surfaces, J. Algebraic Geom. 10(4) (2001) 623–694

    MathSciNet  MATH  Google Scholar 

  31. Mestrano N and Simpson C, Obstructed bundles of rank two on a quintic surface, Internat. J. Math. 22(6) (2011) 789–836

    Article  MathSciNet  Google Scholar 

  32. Mestrano N and Simpson C, Irreducibility of the moduli space of stable vector bundles of rank two and odd degree on a very general quintic surface, Pacific J. Math. 293(1) (2018) 121–172

    Article  MathSciNet  Google Scholar 

  33. Nakashima T, Brill–Noether problems in higher dimensions, Forum Math. 20(1) (2008) 145–161

    Article  MathSciNet  Google Scholar 

  34. Pal S, Irreducibility of moduli of vector bundles over a very general sextic surface, arXiv preprint arXiv:2003.07036 (2020)

  35. Patnott M, The h-vectors of arithmetically Gorenstein sets of points on a general sextic surface in \({\mathbb{P}}^3\), J. Algebra 403 (2014) 345–362

    Article  MathSciNet  Google Scholar 

  36. Yoshioka K, Some examples of Mukai’s reflections on K3 surfaces, J. Reine Angew. Math. 515 (1999) 97–123

    Article  MathSciNet  Google Scholar 

  37. Yoshioka K, Brill–Noether problem for sheaves on K3 surfaces, Proceedings of the Workshop Algebraic Geometry and Integrable Systems related to String Theory (2001) pp. 109–124

Download references

Acknowledgements

The author would like to thank Dr. Sarbeswar Pal for many valuable comments. He thanks Dr. Krishanu Dan for answering a question on dimension estimate and Dr. Emre Coşkun for pointing out the relevant works regarding Ulrich bundles on surfaces. Finally, he would like to thank Prof. Luca Chiantini for pointing out the work on the classification of ACM bundles on general sextic surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debojyoti Bhattacharya.

Additional information

Communicating Editor: D S Nagaraj

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, D. Geometry of certain Brill–Noether locus on a very general sextic surface and Ulrich bundles. Proc Math Sci 132, 22 (2022). https://doi.org/10.1007/s12044-021-00652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-021-00652-5

Keywords

2010 Mathematics Subject Classification

Navigation