Skip to main content
Log in

Positive solutions with single and multi-peak for semilinear elliptic equations with nonlinear boundary condition in the half-space

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider the existence of single and multi-peak solutions of the following nonlinear elliptic Neumann problem

$$\begin{aligned} \left\{ \begin{aligned} -\Delta u+\lambda ^{2} u&=Q(x)|u|^{p-2}u \qquad&\text {in} ~~~~\mathbb {R}^{N}_{+}, \\ \frac{\partial u }{\partial n}&=f(x,u) \qquad&\text {on}~~\partial \mathbb {R}^{N}_{+}, \end{aligned}\right. \end{aligned}$$

where \(\lambda \) is a large number, \(p\in (2,\frac{2N}{N-2})\) for \(N\ge 3\), f(xu) is subcritical about u and Q is positive and has some non-degenerate critical points in \(\mathbb {R}^{N}_{+}\). For \(\lambda \) large, we can get solutions which have peaks near the non-degenerate critical points of Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahri A and Li Y, On a min-max procedure for the existence of a positive solution for certain scalar field equations in \({\mathbb{R}}^{{N}}\), Rev. Mat. Iberoamericana 6(1–2) (1990) 1–15

    Article  MathSciNet  MATH  Google Scholar 

  2. Bahri A and Lions P, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 14(3) (1997) 365–413

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao D, and Noussair E, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in \({\mathbb{R}}^{{N}}\), Ann. Inst. H. Poincaré Anal. Non Linéaire 13(5) (1996) 567–588

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao D and Kupper T, On the existence of multi-peaked solutions to a semilinear Neumann problem, Duke Math. J. 97(2) (1999) 261–300

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao D, Noussair E and Yan S, Solutions with multiple peaks for nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 129(2) (1999) 235–264

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao D, Noussair E and Yan S, Existence and uniqueness results on single-peaked solutions of a semilinear problem, Ann. Inst. H. Poincaré Anal. Non Linéaire 15(1) (1998) 73–111

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao D and Noussair E, Multi-peak solutions for a singularly perturbed semilinear elliptic problem, J. Differential Equations 166(2) (2000) 266–289

    Article  MathSciNet  MATH  Google Scholar 

  8. Chipot M, Chlebik M, Fila M and Shafrir I, Existence of positive solutions of a semilinear elliptic equation in \({\mathbb{R}}_{{+}}^{{n}}\) with a nonlinear boundary condition, J. Math. Anal. Appl. 223(2) (1998) 429–471

    Article  MathSciNet  MATH  Google Scholar 

  9. Dancer E and Yan S, On the existence of multipeak solutions for nonlinear field equations on \({\mathbb{R}}^{{N}}\), Discrete Contin. Dynam. Systems 6(1) (2000) 39–50

    MATH  Google Scholar 

  10. Kwong M, Uniqueness of positive solutions of \(-\Delta u+u=u^{p}\) in \({\mathbb{R}}^{{N}}\), Arch. Rational Mech. Anal. 105(3) (1989) 243–266

    Article  MathSciNet  MATH  Google Scholar 

  11. Noussair E and Yan S, On positive multipeak solutions of a nonlinear elliptic problem, J. London Math. Soc.(2) 62(1) (2000) 213–227

    Article  MathSciNet  MATH  Google Scholar 

  12. Noussair E and Cao D, Multiplicity results for an inhomogeneous nonlinear elliptic problem, Differential Integral Equ. 11(1) (1998) 47–59

    MathSciNet  MATH  Google Scholar 

  13. Rey O, The role of Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89(1) (1990) 1–52

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang Z, On the existence of multiple, single-peaked solutions for a semilinear Neumann problem Arch. Rational Mech. Anal. 120(4) (1992) 375–399

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu T, Existence and multiplicity of positive solutions for a class of nonlinear boundary value problems, J. Differential Equations 252(5) (2012) 3403–3435

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu T, Multiplicity of positive solutions for a semilinear elliptic equation in \({\mathbb{R}}^{{N}}_{{+}}\) with nonlinear boundary condition, Commun. Pure Appl. Anal. 9(6) (2010) 1675–1696

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu T, Multiple positive solutions of a nonlinear boundary value problem involving a sign-changing weight, Nonlinear Anal. 74(12) (2011) 4223–4233

    Article  MathSciNet  MATH  Google Scholar 

  18. Xie Z, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in \({\mathbb{R}}^{{N}}\), Proc. Roy. Soc. Edinburgh Sect. A 128(5) (1998) 1069–1097

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu X, Liouville theorem for elliptic equations with nonlinear boundary value conditions and finite Morse indices, J. Math. Anal. Appl. 421(1) (2015) 436–443

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Additional information

Communicating Editor: S Kesavan

Appendix

Appendix

PROPOSITION A1

There is a positive constant \(\delta \), independent of w, such that

$$\begin{aligned} \Vert w\Vert ^{2}-(p-1)\int _{\mathbf {R}^{N}_{+}}U_{\lambda a+x}^{p-2}w^{2}\mathrm{d}y\ge \delta \Vert w\Vert ^{2},~\forall w\in E_{\lambda ,x}. \end{aligned}$$

As the arguments in [4], we first consider the eigenvalue problem

$$\begin{aligned} \left\{ \begin{aligned} -\Delta \varphi + \varphi&= \mu U_{\lambda a+x}^{p-2}\varphi&\qquad&\text {in}~ \mathbb {R}^{N}_{+},\\ \frac{\partial \varphi }{\partial n}&= 0&\qquad&\text {on}~ \partial \mathbb {R}^{N}_{+} \end{aligned}\right. \end{aligned}$$
(A1)

which is equivalent to

$$\begin{aligned} \left\{ \begin{aligned} -\Delta \varphi + \varphi&= \mu U^{p-2}\varphi&\qquad&\text {in}~ \Omega _{\lambda }=\{y\in \mathbb {R}^{N}:y_{N}>-\lambda a_{N}-x_{N}\},\\ \frac{\partial \varphi }{\partial n}&= 0&\qquad&\text {on}~ \partial \Omega _{\lambda }. \end{aligned} \right. \end{aligned}$$
(A2)

Denote the j-th pair of eigenvalues and eigenfunctions of problem (A2) by (\(\mu _{\lambda ,j},\phi _{\lambda ,j}\)) for \(j = 1, \ldots , N + 1\) with \(\mu _{\lambda ,1}\le \cdots \le \mu _{\lambda ,N+1}\). As \(\lambda \rightarrow \infty ,\) the limiting equation of (A2) is as follows:

$$\begin{aligned} \begin{aligned} -\Delta \varphi + \varphi = \mu U^{p-2}\varphi ~~~~~\text {in}~ \mathbb {R}^{N}. \end{aligned} \end{aligned}$$
(A3)

Denote the j-th pair of eigenvalues and eigenfunctions of problem (A3) by (\(\mu _{j}, \phi _{j}\)) for \(j = 1, \ldots , N+1\) with \(\mu _1\le \cdots \le \mu _{N+1}\). Then by [4], we have \(\mu _1 = 1, \mu _2 = \mu _{N + 1} = p - 1; \phi _1=U, \phi _j\in \) span \(\{\frac{\partial U_{x}}{\partial x_{i}}:~ i=1,\ldots ,N\}\) for \(j=2,\ldots ,N+1\)

Lemma A1

Let \(\lambda \rightarrow \infty \). We have the following facts:

$$\begin{aligned} \mu _{\lambda ,j}\rightarrow \mu _{j},~~~j=1,2,\ldots ,N+1;~~~~ \phi _{\lambda ,j}\rightharpoonup \tilde{\phi _{j}}~~~in~H^{1}(\Sigma ),~~~\mathbb {R}^{N}_{+} \subset \Sigma \Subset \mathbb {R}^{N}; \end{aligned}$$
$$\begin{aligned} \tilde{\phi _{j}}\in \mathrm{span} \left\{ \frac{\partial U_{x}}{\partial x_{i}}:~ i=1,\ldots ,N\right\} ,~~j=2,\ldots ,N+1;~~ \tilde{\phi _{1}}=CU; \end{aligned}$$
$$\begin{aligned} \int _{\Omega _{\lambda }}|\nabla \phi _{\lambda ,j}-\nabla \tilde{\phi _{j}}|^{2}+(\phi _{\lambda ,j}- \tilde{\phi _{j}})^{2}\rightarrow 0,~~\lambda \rightarrow \infty ,~~j=1,\ldots ,N+1. \end{aligned}$$

Proof

The first eigenvalue of problem (A2) is defined by \(\mu _{\lambda ,1}=\mathrm{inf}\{\int _{\Omega _{\lambda }}|\nabla u|^{2}+u^{2}:u\in H^{1}(\Omega _{\lambda }),\int _{\Omega _{\lambda }}U^{p-2}u^{2}=1\}\). Set  \(u=\frac{U(x)}{(\int _{\Omega _{\lambda }}U^{p}\mathrm{d}x)^{1/2}}.\) Then

$$\begin{aligned} \int _{\Omega _{\lambda }}|\nabla u|^{2}+u^{2}\mathrm{d}x=\frac{\int _{\Omega _{\lambda }}|\nabla U|^{2}+U^{2}\mathrm{d}x}{\int _{\Omega _{\lambda }}U^{p}\mathrm{d}x}\rightarrow 1,~~~ \lambda \rightarrow \infty . \end{aligned}$$

Thus \(\mu _{\lambda ,1}\le 1+o(1)\), so we can assume that \(\mu _{\lambda ,1}\rightarrow \mu _{1}^{*}\) as \(\lambda \rightarrow \infty \) and \(\mu _{1}^{*}\le 1\). First, \(\mu _{1}^{*}\ne 0\), else we have \(\int _{\Omega _{\lambda }}U^{p-2}\phi _{\lambda ,1}^{2}\rightarrow 0\) as \(\lambda \rightarrow \infty ,\) which is a contradiction with \(\int _{\Omega _{\lambda }}U^{p-2}\phi _{\lambda ,1}^{2}=1\). Because \(\phi _{\lambda ,1}\) is bounded in \(H^{1}(\Omega _{\lambda })\) and

$$\begin{aligned}\left\{ \begin{aligned} -\Delta \phi _{\lambda ,1} + \phi _{\lambda ,1}&=\mu _{\lambda ,1} U^{p-2}\phi _{\lambda ,1}&~~~~~&\text {in}~ \Omega _{\lambda }=\{y\in \mathbb {R}^{N}:y_{N}>-\lambda a_{N}-x_{N}\}, \\ \frac{\partial \phi _{\lambda ,1}}{\partial n}&= 0&~~~~~&\text {on}~ \partial \Omega _{\lambda }, \end{aligned}\right. \end{aligned}$$
$$\begin{aligned} \int _{\Omega _{\lambda }}\nabla \phi _{\lambda ,1}\cdot \nabla \psi +\phi _{\lambda ,1}\psi =\mu _{\lambda ,1}\int _{\Omega _{\lambda }} U^{p-2}\phi _{\lambda ,1}\psi ,~~~\forall \psi \in H^{1}(\mathbb {R}^{N}), \end{aligned}$$

we have that \(\phi _{\lambda ,1}\rightharpoonup \tilde{\phi _{1}}\) in \(H^{1}(\Sigma )\), for \(\mathbb {R}^{N}_{+}\subset \Sigma \subset \mathbb {R}^{N} \). Let \(\lambda \rightarrow \infty \),

$$\begin{aligned} \int _{\mathbb {R}^{N}}\nabla \tilde{\phi _{1}}\cdot \nabla \psi +\tilde{\phi _{1}}\psi \mathrm{d}x=\int _{\mathbb {R}^{N}}\mu _{1}^{*} U^{p-2}\tilde{\phi _{1}}\psi \mathrm{d}x, \end{aligned}$$

thus

$$\begin{aligned} -\Delta \tilde{\phi _{1}}+\tilde{\phi _{1}}=\mu _{1}^{*} U^{p-2}\tilde{\phi _{1}}~~~~~\mathrm{in}~~\mathbb {R}^{N} \end{aligned}$$

and \((\mu _{1}^{*},\tilde{\phi _{1}})\) is a pair of eigenvalue and eigenfunction of (A3) and \(0<\mu _{1}^{*} \le 1\). Hence, \(\mu _{1}^{*}=1\) and \(\tilde{\phi _{1}}=CU.\)

By induction, we can get the rest of the conclusion. Suppose for \(2\le k\le N+1\), we have

$$\begin{aligned}&\phi _{\lambda ,j}\rightharpoonup \tilde{\phi _{j}}~~~\mathrm{in}~H^{1}(\Sigma ),~~ \Sigma \subset \mathbb {R}^{N},~~\tilde{\phi _{j}}\in \text {span} \\&\quad \left\{ U,\frac{\partial U_{x}}{\partial x_{i}}: i=1,\ldots ,N\right\} .~~~~j=1,2,\ldots ,k-1. \end{aligned}$$

The k-th eigenvalue of (A2) is characterized by

$$\begin{aligned}&\mu _{\lambda ,k}=\mathrm{inf}\left\{ \int _{\Omega _{\lambda }}|\nabla u|^{2}+u^{2}\mathrm{d}x:u\in H^{1}(\Omega _{\lambda }), \right. \\&\quad \left. \int _{\Omega _{\lambda }}U^{p-2}u^{2}\mathrm{d}x=1, \langle u,\phi _{\lambda ,j}\rangle _{\Omega _{\lambda }}=0,j=1,\ldots ,k-1\right\} . \end{aligned}$$

Claim 1. \(\lim \nolimits _{\lambda \rightarrow \infty }\mu _{\lambda ,k}=p-1\). At first, let us prove \(\mu _{\lambda ,k}\le p-1+o(1)\). Choose \(t_{\lambda ,j}=\frac{\langle \phi _{\lambda ,j}, \tilde{U}\rangle _{\Omega _{\lambda }}}{\mu _{\lambda ,j}}\), \(j=1,\ldots ,k-1\), \(\tilde{U}\in \text {span}\{U,\frac{\partial U_{x}}{\partial x_{i}}:i=1,\ldots ,N\}\backslash \text {span} \{\tilde{\phi _{i}},i=1,\ldots ,k-1\}\) and

$$\begin{aligned} \int _{\mathbb {R}^{N}}|\nabla \tilde{U}|^{2}+|\tilde{U}|^{2}\mathrm{d}x=p-1, ~~~\int _{\Omega _{\lambda }}U^{p-2}\tilde{U}^{2}\mathrm{d}x=1. \end{aligned}$$

Set \(u_{\lambda }=\frac{\tilde{U}-\sum _{j=1}^{k-1}t_{\lambda ,j}\phi _{\lambda ,j}}{\big (\int _{\Omega _{\lambda }}U^{p-2}(\tilde{U}-\sum _{j=1}^{k-1}t_{\lambda ,j}\phi _{\lambda ,j})^{2}\big )^{1/2}}\). Then \(u_{\lambda }\) satisfies

$$\begin{aligned} \int _{\Omega _{\lambda }}U^{p-2}u_{\lambda }^{2}\mathrm{d}x=1,~ \langle u_{\lambda },\phi _{\lambda ,j}\rangle _{\Omega _{\lambda }}=0,~j=1,\ldots ,k-1, \end{aligned}$$

hence

$$\begin{aligned} \mu _{\lambda ,k}\le ~\langle u_{\lambda },u_{\lambda }\rangle _{\Omega _{\lambda }}~\rightarrow p-1,~ j=1,\ldots ,k-1,~~\mathrm{as}~\lambda \rightarrow \infty . \end{aligned}$$

As before, we have

$$\begin{aligned} \phi _{\lambda ,k}\rightharpoonup \phi _{k}^{*}~~~\text {in}~H^{1}(\Sigma ) \end{aligned}$$

and

$$\begin{aligned} \int _{_{\mathbb {R}^{N}}}\nabla \phi _{k}^{*}\cdot \nabla \psi +\phi _{k}^{*}\psi =\int _{_{\mathbb {R}^{N}}}\mu _{k}^{*} U^{p-2}\phi _{k}^{*}\psi ,\quad \forall \psi \in H^{1}(\mathbb {R^{N}}). \end{aligned}$$

From \(\langle \phi _{\lambda ,k},\phi _{\lambda ,j}\rangle _{\Omega _{\lambda }}=0\), \(j=1,\ldots ,k-1\), we get that \(\langle \phi ^{*}_{k},{\tilde{\phi _{j}}}\rangle =0.\) Thus

For \(k=N+2,\) by similar argument we can get \(\lim \nolimits _{\lambda \rightarrow \infty }\mu _{\lambda ,N+2}=\mu _{N+2}>p-1\). \(\square \)

Proof of Proposition A1

For all \(w\in E_{\lambda ,x}\), we set \(\tilde{w}(y)=w(y+\lambda a +x)\), then \(\tilde{w}(y)\) satisfies \(\langle \tilde{w}(y),U\rangle _{\Omega _{\lambda }}=\langle \tilde{w}(y),\frac{\partial U}{\partial y_{i}}\rangle _{\Omega _{\lambda }}=0\), \(i=1,\ldots ,N\). Then the problem becomes

$$\begin{aligned} \Vert \tilde{w}\Vert _{\Omega _{\lambda }}^{2}-(p-1)\int _{\Omega _{\lambda }}U^{p-2}\tilde{w}^{2}\mathrm{d}x\ge \rho ' \Vert \tilde{w}\Vert _{\Omega _{\lambda }}^{2},~\forall w\in E_{\lambda ,x}. \end{aligned}$$

Let

$$\begin{aligned} \tilde{w}&=\sum _{i=1}^{N+1}\langle \tilde{w},\phi _{\lambda ,i} \rangle _{\Omega _{\lambda }} \phi _{\lambda ,i}+R_{\lambda }, ~~~~~ \\ \Vert \tilde{w}\Vert _{\Omega _{\lambda }}^{2}&=\sum _{i=1}^{N+1} \langle \tilde{w},\phi _{\lambda ,i}\rangle _{\Omega _{\lambda }}^{2} \Vert \phi _{\lambda ,i}\Vert _{\Omega _{\lambda }}^{2}+\Vert R_{\lambda }\Vert _{\Omega _{\lambda }}^{2}. \end{aligned}$$

So, it is not hard to derive

$$\begin{aligned} \Vert R_{\lambda }\Vert ^{2}_{\Omega _{\lambda }}\ge & {} \mu _{\lambda ,N+2}\int _{\Omega _{\lambda }}U^{p-2}R_{\lambda }^{2}\mathrm{d}x \\= & {} \mu _{\lambda ,N+2}\left[ \int _{\Omega _{\lambda }}U^{p-2}\tilde{w}^{2}\mathrm{d}x -2\sum _{i=1}^{N+1}\langle \tilde{w},\phi _{\lambda ,i}\rangle _{\Omega _{\lambda }}\right. \\&\left. \int _{\Omega _{\lambda }}U^{p-2}\tilde{w}+\sum _{i=1}^{N+1} \langle \tilde{w},\phi _{\lambda ,i}\rangle _{\Omega _{\lambda }}^{2}\right] \\= & {} \mu _{\lambda ,N+2}\left[ \int _{\Omega _{\lambda }}U^{p-2}\tilde{w}^{2}\mathrm{d}x +\sum _{i=1}^{N+1}\langle \tilde{w},\phi _{\lambda ,i}\rangle _{\Omega _{\lambda }}^{2} +o(1)\Vert \tilde{w}\Vert _{\Omega _{\lambda }}\right] . \end{aligned}$$

This implies

$$\begin{aligned} \Vert \tilde{w}\Vert _{\Omega _{\lambda }}^{2}&\ge \mu _{\lambda ,N+2} \left[ \int _{\Omega _{\lambda }}U^{p-2}\tilde{w}^{2}\mathrm{d}x +\sum _{i=1}^{N+1}\langle \tilde{w},\phi _{\lambda ,i}\rangle _{\Omega _{\lambda }}^{2}\right] \\&\quad +\sum _{i=1}^{N+1}\langle \tilde{w},\phi _{\lambda ,i}\rangle _{\Omega _{\lambda }}^{2}\mu _{\lambda ,i}+o(1). \end{aligned}$$

Because \(\phi _{\lambda ,i}\rightarrow \tilde{\phi _{i}}\in \text {span}\{U,\frac{\partial U_{x}}{\partial x_{i}}:~ i=1,\cdot ,N\}\), \(\langle \tilde{w},\phi _{\lambda ,i}\rangle \rightarrow 0\) as \(\lambda \rightarrow \infty \);

$$\begin{aligned} \Vert \tilde{w}\Vert _{\Omega _{\lambda }}^{2}\ge \mu _{\lambda ,N+2} \int _{\Omega _{\lambda }}U^{p-2}\tilde{w}^{2}\mathrm{d}x +o(1)\Vert \tilde{w}\Vert _{\Omega _{\lambda }}^{2}. \end{aligned}$$

Hence, by \(\mu _{\lambda ,N+2}>p-1\) for large \(\lambda \), there exists a small constant \(\rho '>0\) such that

$$\begin{aligned} \Vert \tilde{w}\Vert _{\Omega _{\lambda }}^{2}-(p-1)\int _{\Omega _{\lambda }}U^{p-2} \tilde{w}^{2}\mathrm{d}x\ge \rho '\Vert \tilde{w}\Vert _{\Omega _{\lambda }}^{2}, \end{aligned}$$

which is equivalent to

$$\begin{aligned} \Vert w\Vert ^{2}-(p-1)\int _{\mathbb {R}^{N}_{+}}U_{\lambda a+x}^{p-2}w^{2}\mathrm{d}x\ge \rho '\Vert w\Vert ^{2}. \end{aligned}$$

PROPOSITION A2

There exists a positive constant \(\delta \) independent of w, such that for large \(\lambda \),

$$\begin{aligned} \Vert w\Vert ^{2}-(p-1)\int _{\mathbb {R}^{N}_{+}}({U_{\lambda a^{1}+x^{1}}+U_{\lambda a^{2}+x^{2}}})^{p-2}w^{2}\mathrm{d}y\ge \delta \Vert w\Vert ^{2},~\forall w\in E_{\lambda ,x^{1},x^{2}}. \end{aligned}$$

With the help of Proposition A1, we can show this result by a similar argument in [4].

Proof

Set

$$\begin{aligned}&\Lambda _{\lambda }=\mathrm{inf}\left\{ \displaystyle \int _{\mathbb {R}^{N}_{+}}|\nabla w|^{2}+w^{2}:~w\in E_{\lambda ,x^{1},x^{2}}, \right. \\&\quad \quad \quad \quad \quad \quad \qquad \quad \left. \displaystyle \int _{\mathbb {R}^{N}_{+}}(U_{\lambda a^{1}+x^{1}}+U_{\lambda a^{2}+x^{2}})^{p-2}w^{2}\mathrm{d}y=1\right\} . \end{aligned}$$

It suffices to show that \(\Lambda _{\lambda }>p-1+c_{0}\), for some positive number \(c_{0}\), as \(\lambda \) large enough. By contradiction, suppose there is a sequence \(\lambda _{n}\rightarrow \infty \): \(\lim \nolimits _{n\rightarrow \infty }\Lambda _{\lambda _{n}}=\Lambda \le p-1\). Namely, there exists \(w_{n}\in H^{1}(\mathbb {R}^{N}_{+})\):

$$\begin{aligned}&\int _{\mathbb {R}^{N}_{+}}\nabla w_{n}\cdot \nabla U_{\lambda _{n} a^{i}+x^{i}}+ w_{n}\cdot U_{\lambda _{n} a^{i}+x^{i}}\mathrm{d}y=0,~~~~i=1,2; \end{aligned}$$
(A4)
$$\begin{aligned}&\int _{\mathbb {R}^{N}_{+}}\nabla w_{n}\cdot \nabla \frac{\partial U_{\lambda _{n} a^{i}+x^{i}}}{\partial x^{i}_{j}}+ w_{n}\cdot \frac{\partial U_{\lambda _{n} a^{i}+x^{i}}}{\partial x^{i}_{j}}\mathrm{d}y=0, \nonumber \\&i=1,2; ~j=1,\ldots ,N; \end{aligned}$$
(A5)
$$\begin{aligned}&\int _{\mathbb {R}^{N}_{+}}|\nabla w_{n}|^{2}+w_{n}^{2}\mathrm{d}y =\Lambda _{\lambda _{n}} \int _{\mathbb {R}^{N}_{+}} \left( U_{\lambda _{n} a^{1}+x^{1}}+ U_{\lambda _{n} a^{2}+x^{2}}\right) ^{p-2}w_{n}^{2}\mathrm{d}y; \end{aligned}$$
(A6)
$$\begin{aligned}&\int _{\mathbb {R}^{N}_{+}}\nabla w_{n}\cdot \nabla \psi +w_{n} \psi \mathrm{d}y=\Lambda _{\lambda _{n}} \int _{\mathbb {R}^{N}_{+}} (U_{\lambda _{n} a^{1}+x^{1}}+ U_{\lambda _{n} a^{2}+x^{2}})^{p-2}w_{n}\psi \mathrm{d}y,\nonumber \\&\forall \psi \in E_{\lambda _{n},x^{1},x^{2}}. \end{aligned}$$
(A7)

Set \(\tilde{w}_{n}(x)=w_{n}(x+\lambda _{n} a^{1}+x^{1})\), \(\Omega _{\lambda _{n}}=\mathbb {R}^{N}_{+}-\{\lambda _{n} a^{1}+x^{1}\}\). Then we have

$$\begin{aligned} \int _{\Omega _{\lambda _{n}}}|\nabla \tilde{w}_{n}|^{2}+\tilde{w}_{n}^{2}=\Lambda _{\lambda _{n}} \int _{\Omega _{\lambda _{n}}} (U+ U_{\lambda _{n} a^{2}+x^{2}-\lambda _{n} a^{1}-x^{1}})^{p-2}\tilde{w}_{n}^{2}. \end{aligned}$$

We can assume that for some \(\tilde{w}\in H^{1}(\mathbb {R}^{N})\), there holds

$$\begin{aligned} \lim _{n\rightarrow \infty }\tilde{w}_{n}=\tilde{w},~~~\text {weakly}~~~\text {in}~~H^{1}(\Sigma ),~~\forall ~~ \mathbb {R}^{N}_{+}\subset \Sigma \subset \mathbb {R}^{N}. \end{aligned}$$

Then from (3) and (4) we have

$$\begin{aligned}&\int _{\mathbb {R}^{N}}\nabla \tilde{w}\cdot \nabla U+\tilde{w}U\mathrm{d}y=0, \end{aligned}$$
(A8)
$$\begin{aligned}&\quad \int _{\mathbb {R}^{N}}\nabla \tilde{w}\cdot \nabla \frac{\partial U}{\partial x_{j}}+\tilde{w}\frac{\partial U}{\partial x_{j}}\mathrm{d}y=0,~~ j=1,\ldots ,N. \end{aligned}$$
(A9)

We claim that

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^{N}}|\nabla \tilde{w}|^{2}+|\tilde{w}|^{2}=\Lambda \int _{\mathbb {R}^{N}}U^{p-2}\tilde{w}^{2}\mathrm{d}y. \end{aligned} \end{aligned}$$
(A10)

Now we are to choose numbers \(l_{\lambda _{n},1},l_{\lambda _{n},2},\ldots ,l_{\lambda _{n},2N+2}\) such that \(v\in E_{\lambda _{n},x^{1},x^{2}}\), in which \(w(x)=\tilde{w}(x-\lambda _{n} a^{1}-x^{1})\),

$$\begin{aligned}&v=w-l_{\lambda _{n},1}U_{\lambda _{n} a^{1}+x^{1}}-l_{\lambda _{n},2}U_{\lambda _{n} a^{2}+x^{2}} \\&\qquad -\sum \limits _{j=1}^{N}\left( l_{\lambda _{n},j+2}\frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{j}^{1}}+l_{\lambda _{n},N+j+2}\frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{j}^{2}}\right) . \end{aligned}$$

This is equivalent to the following system of linear equations

$$\begin{aligned} \left\langle w,U_{\lambda _{n} a^{1}+x^{1}}\right\rangle&=l_{\lambda _{n},1}\Vert U_{\lambda _{n} a^{1}+x^{1}}\Vert ^{2}+l_{\lambda _{n},2}\left\langle U_{\lambda _{n} a^{1}+x^{1}},U_{\lambda _{n} a^{2}+x^{2}}\right\rangle \nonumber \\&\quad +\sum _{j=1}^{N}l_{\lambda _{n},j+2}\left\langle \frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{j}^{1}},U_{\lambda _{n} a^{1}+x^{1}}\right\rangle \nonumber \\&\quad +\sum _{j=1}^{N}l_{\lambda _{n},N+j+2}\left\langle \frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{j}^{2}},U_{\lambda _{n} a^{1}+x^{1}}\right\rangle , \end{aligned}$$
(A11)
$$\begin{aligned} \left\langle w,U_{\lambda _{n} a^{2}+x^{2}}\right\rangle&= l_{\lambda _{n},2}\Vert U_{\lambda _{n} a^{2}+x^{2}}\Vert ^{2}+l_{\lambda _{n},1}\left\langle U_{\lambda _{n} a^{1}+x^{1}},U_{\lambda _{n} a^{2}+x^{2}}\right\rangle \nonumber \\&\quad +\sum _{j=1}^{N}l_{\lambda _{n},j+2}\left\langle \frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{j}^{1}},U_{\lambda _{n} a^{2}+x^{2}}\right\rangle \nonumber \\&\quad + \sum _{j=1}^{N}l_{\lambda _{n},N+j+2}\left\langle \frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{j}^{2}},U_{\lambda _{n} a^{2}+x^{2}}\right\rangle ,~~~~~~\end{aligned}$$
(A12)
$$\begin{aligned} \left\langle w,\frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{i}^{1}}\right\rangle&= l_{\lambda _{n},1}\left\langle U_{\lambda _{n} a^{1}+x^{1}},\frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{i}^{1}}\right\rangle \nonumber \\&\quad +l_{\lambda _{n},2}\left\langle \frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{i}^{1}},U_{\lambda _{n} a^{2}+x^{2}}\right\rangle \nonumber \\&\quad +\sum _{j=1}^{N}l_{\lambda _{n},j+2}\left\langle \frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{j}^{1}},\frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{i}^{1}}\right\rangle \nonumber \\&\quad + \sum _{j=1}^{N}l_{\lambda _{n},N+j+2}\left\langle \frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{j}^{2}},\frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{i}^{1}}\right\rangle , \end{aligned}$$
(A13)
$$\begin{aligned} \left\langle w,\frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{i}^{2}}\right\rangle&= l_{\lambda _{n},1}\left\langle U_{\lambda _{n} a^{1}+x^{1}},\frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{i}^{2}}\right\rangle \nonumber \\&\quad +l_{\lambda _{n},2}\left\langle \frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{i}^{2}},U_{\lambda _{n} a^{2}+x^{2}}\right\rangle \nonumber \\&\quad +\sum _{j=1}^{N}l_{\lambda _{n},j+2}\left\langle \frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{j}^{1}},\frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{i}^{2}}\right\rangle \nonumber \\&\quad + \sum _{j=1}^{N}l_{\lambda _{n},N+j+2}\left\langle \frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{j}^{2}},\frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{i}^{2}}\right\rangle . \end{aligned}$$
(A14)

To solve the system of linear equations, we need to establish estimates of the coefficients. We know that

$$\begin{aligned}&\langle U_{\lambda a^{1}+x^{1}},U_{\lambda a^{2}+x^{2}}\rangle =o(1),~~~\lambda \rightarrow \infty ; \\&\left\langle \frac{\partial U_{\lambda a^{1}+x^{1}}}{\partial x_{j}^{1}},U_{\lambda a^{1}+x^{1}}\right\rangle =\int _{\Omega _{\lambda }}\nabla \frac{\partial U}{\partial x_{j}}\cdot \nabla U+ \frac{\partial U}{\partial x_{j}}\cdot U=o(1),~~~\lambda \rightarrow \infty . \end{aligned}$$

Similarly,

$$\begin{aligned}&\quad \left\langle \frac{\partial U_{\lambda a^{i}+x^{i}}}{\partial x_{j}^{i}},U_{\lambda a^{k}+x^{k}}\right\rangle =o(1),~~\lambda \rightarrow \infty ,~~i=1,2;~~k=1,2; \\&\quad \Vert U_{\lambda a^{i}+x^{i}}\Vert ^{2}\rightarrow A^{2},~~\lambda \rightarrow \infty ,~~i=1,2;~~A^{2}=\Vert U\Vert ^{2}_{H^{1}(\mathbb {R}^{N})}, \\&\qquad \Bigg \Vert \frac{\partial U_{\lambda a^{i}+x^{i}}}{\partial x_{j}^{i}}\Bigg \Vert ^{2}\rightarrow B^{2},~~\lambda \rightarrow \infty ,~~i=1,2;~~~j=1,\ldots ,N; \\&\quad ~~~~B^{2}=\Vert \nabla U\Vert ^{2}_{H^{1}(\mathbb {R}^{N})}. \end{aligned}$$

By (6) we have

$$\begin{aligned}&\langle w,U_{\lambda _{n} a^{1}+x^{1}}\rangle =\int _{\mathbb {R}^{N}_{+}}\nabla w\cdot \nabla U_{\lambda _{n} a^{1}+x^{1}}+wU_{\lambda _{n} a^{1}+x^{1}}\mathrm{d}y \\&\quad = \int _{\mathbb {R}^{N}_{+}-\{\lambda _{n} a^{1}+x^{1}\}}\nabla w(x+\lambda _{n} a^{1}+x^{1})\cdot \nabla U+w(x+\lambda _{n} a^{1}+x^{1})U\mathrm{d}y \\&\quad \rightarrow \int _{\mathbb {R}^{N}}\nabla \tilde{w}\cdot \nabla U+\tilde{w}U\mathrm{d}y=0,~ \lambda _{n}\rightarrow \infty . \end{aligned}$$

Similarly,

$$\begin{aligned}&\left\langle w,\frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{j}^{1}}\right\rangle =o(1),~~~~ \lambda _{n}\rightarrow \infty ,~~j=1,\ldots ,N; \\&\quad \left\langle w,U_{\lambda _{n} a^{2}+x^{2}}\right\rangle \,=\int _{\mathbb {R}^{N}_{+}-\lambda a^{2}-x^{2}}\nabla \tilde{w}\cdot \nabla U(x+\lambda _{n} a^{1}+x^{1}-\lambda _{n} a^{2}-x^{2}) \\&\quad \quad +\,\tilde{w}U(x+\lambda _{n} a^{1}+x^{1}-\lambda _{n} a^{2}-x^{2})\mathrm{d}y. \end{aligned}$$

By (3) and \(\tilde{w}_{n}\rightharpoonup \tilde{w}\), we have

$$\begin{aligned} \langle w,U_{\lambda _{n} a^{2}+x^{2}}\rangle =o(1). \end{aligned}$$

Similarly, \(\langle w,\frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{j}^{2}}\rangle =o(1)\), \(\lambda _{n}\rightarrow \infty \), \(j=1,\ldots ,N.\) Owing to the above estimates, we know that the system of linear equations is equivalent to

$$\begin{aligned} \left( \begin{array}{cccc} a_{1,1} &{} a_{1,2} &{} \cdots &{} a_{1,2N+2} \\ a_{2,1} &{} a_{2,2} &{} \cdots &{} a_{2,2N+2} \\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ a_{2N+2,1} &{} a_{2N+2,2} &{} \cdots &{} a_{2N+2,2N+2} \end{array} \right) \cdot \left( \begin{array}{c} l_{\lambda ,1} \\ l_{\lambda ,2} \\ \vdots \\ l_{\lambda ,2N+2} \end{array} \right) = \left( \begin{array}{c} o(1) \\ o(1) \\ \vdots \\ o(1) \end{array} \right) , \end{aligned}$$

in which \(a_{ij}=o(1)\) if \(i\ne j\), \(a_{ii}>a_{0}>0\), for \(i,j=1,\ldots ,2N+2\). Therefore, (10)–(13) has a solution and \(l_{\lambda ,i}=o(1)\), \(i=1,\ldots ,2N+2\). Next, we will give the proof of (9). Set

$$\begin{aligned} v_{n}= & {} w-l_{\lambda _{n},1}U_{\lambda _{n} a^{1}+x^{1}}-l_{\lambda _{n},2}U_{\lambda _{n} a^{2}+x^{2}} \\&-\sum _{j=1}^{N}\left( l_{\lambda _{n},j+2}\frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{j}^{1}}+l_{\lambda _{n},N+j+2}\frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{j}^{2}}\right) , \end{aligned}$$

such that \(v_{n}\in E_{\lambda _{n},x^{1},x^{2}}\) and substitute \(\psi =v_{n}\) into (6). We have

$$\begin{aligned}&\int _{\mathbb {R}^{N}_{+}}\nabla w_{n}\cdot \nabla w+w_{n}w\mathrm{d}y = \Lambda _{\lambda _{n}}\int _{\mathbb {R}^{N}_{+}}(U_{\lambda _{n} a_{1}+x^{1}}+ U_{\lambda _{n} a_{2}+x^{2}})^{p-2}w_{n}w\mathrm{d}y \\&\quad - \Lambda _{\lambda _{n}}\bigg [l_{\lambda _{n},1}\int _{\mathbb {R}^{N}_{+}}(U_{\lambda _{n} a_{1}+x^{1}}+ U_{\lambda _{n} a_{2}+x^{2}})^{p-2}w_{n}U_{\lambda _{n} a_{1}+x^{1}}\mathrm{d}y \\&\quad +l_{\lambda _{n},2}\int _{\mathbb {R}^{N}_{+}}(U_{\lambda _{n} a_{1}+x^{1}}+ U_{\lambda _{n} a_{2}+x^{2}})^{p-2}w_{n}U_{\lambda _{n} a_{2}+x^{2}}\mathrm{d}y \\&\quad +\sum _{j=1}^{N} \left( l_{\lambda _{n},j+2}\int _{\mathbb {R}^{N}_{+}}(U_{\lambda _{n} a_{1}+x^{1}}+ U_{\lambda _{n} a_{2}+x^{2}})^{p-2}w_{n}\frac{\partial U_{\lambda _{n} a^{1}+x^{1}}}{\partial x_{j}^{1}}\mathrm{d}y\right. \\&\quad \left. +l_{\lambda _{n},j+2+N}\int _{\mathbb {R}^{N}_{+}}(U_{\lambda _{n} a_{1}+x^{1}}+ U_{\lambda _{n} a_{2}+x^{2}})^{p-2}w_{n}\frac{\partial U_{\lambda _{n} a^{2}+x^{2}}}{\partial x_{j}^{2}}\right) \mathrm{d}y\bigg ]. \end{aligned}$$

Thus \(\int _{\mathbb {R}^{N}_{+}-\lambda _{n} a_{1}-x^{1}}\nabla \tilde{w}_{n}\cdot \nabla \tilde{w}+\tilde{w}_{n}\tilde{w}\mathrm{d}y\rightarrow \int _{\mathbb {R}^{N}}|\nabla \tilde{w}|^{2}+\tilde{w}^{2}\mathrm{d}y\), and the right-hand side of the equation \(\rightarrow \Lambda \int _{\mathbb {R}^{N}}U^{p-2}\tilde{w}^{2}\). If \(\tilde{w}\not \equiv 0\), then \(\Lambda =p-1\). In fact, by (7) and (8),

$$\begin{aligned} p-1\le & {} \text {inf}\left\{ \int _{\mathbb {R}^{N}}|\nabla u|^{2}+u^{2}:\,u\in H^{1}(\mathbb {R}^{N}),\,\int _{\mathbb {R}^{N}}U^{p-2}u^{2}=1,\right. \\&\left. \langle u,U\rangle _{\mathbb {R}^{N}}=\left\langle u,\frac{\partial U}{\partial x_{i}}\right\rangle _{\mathbb {R}^{N}}=0\right\} \le \Lambda \le p-1. \end{aligned}$$

Therefore \(\tilde{w}\) is an eigenfunction with eigenvalue \(p-1\), \(\tilde{w}\in \text {Span}\{\frac{\partial U}{\partial x_{i}},i=1,\ldots ,N\}\). This is a contradiction with (8). We have \(\tilde{w}=0.\) So, \(\widetilde{w_{n}}\rightharpoonup 0\) in \(H^{1}(\Sigma )\), \(\forall ~ \Sigma :~\mathbb {R}^{N}_{+}\subset \Sigma \subset \mathbb {R}^{N}.\) Similarly, \(\hat{w}_{n}=w_{n}(x+\lambda _{n}a^{2}+x^{2}),~\hat{w}_{n}\rightharpoonup 0\), in \(H^{1}(\Sigma )\). Then we have

$$\begin{aligned} 1&= \int _{\mathbb {R}^{N}_{+}}(U_{\lambda _{n} a^{1}+x^{1}}+ U_{\lambda _{n} a^{2}+x^{2}})^{p-2}w_{n}^{2} \\&=\int _{\mathbb {R}^{N}_{+}}U_{\lambda _{n} a^{1}+x^{1}}^{p-2}w_{n}^{2}+ \int _{\mathbb {R}^{N}_{+}}U_{\lambda _{n} a^{2}+x^{2}}^{p-2}w_{n}^{2}+o(1) \\&=\int _{\mathbb {R}^{N}_{+}-\lambda _{n} a^{1}-x^{1}}U^{p-2}\widetilde{w_{n}}^{2}+ \int _{\mathbb {R}^{N}_{+}-\lambda _{n} a^{2}-x^{2}}U^{p-2}\widehat{w_{n}}^{2}+o(1) \\&\rightarrow 0. \end{aligned}$$

Hence it is a contradiction. Thus \(\Lambda _{\lambda }>p-1+c_{0},\) for \(\lambda \) large enough. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhao, P. Positive solutions with single and multi-peak for semilinear elliptic equations with nonlinear boundary condition in the half-space. Proc Math Sci 128, 22 (2018). https://doi.org/10.1007/s12044-018-0397-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-018-0397-0

Keywords

2010 Mathematics Subject Classification

Navigation