Skip to main content
Log in

A new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional Van der Pol oscillator equation

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, an efficient and accurate computational method based on the Chebyshev wavelets (CWs) together with spectral Galerkin method is proposed for solving a class of nonlinear multi-order fractional differential equations (NMFDEs). To do this, a new operational matrix of fractional order integration in the Riemann–Liouville sense for the CWs is derived. Hat functions (HFs) and the collocation method are employed to derive a general procedure for forming this matrix. By using the CWs and their operational matrix of fractional order integration and Galerkin method, the problems under consideration are transformed into corresponding nonlinear systems of algebraic equations, which can be simply solved. Moreover, a new technique for computing nonlinear terms in such problems is presented. Convergence of the CWs expansion in one dimension is investigated. Furthermore, the efficiency and accuracy of the proposed method are shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As a useful application, the proposed method is applied to obtain an approximate solution for the fractional order Van der Pol oscillator (VPO) equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arikoglu A and Ozkol I, Solution of fractional differential equations by using differential transform method, Chaos Solitons Fractals 34 (2007) 1473–1481

    Article  MathSciNet  MATH  Google Scholar 

  2. Arikoglu A and Ozkol I, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals 40 (2009) 521–529

    Article  MathSciNet  MATH  Google Scholar 

  3. Atay F M, Van der pols oscillator under delayed feedback, J. Sound Vib. 218(2) (1998) 333–339

    Article  MathSciNet  MATH  Google Scholar 

  4. Bagley R L and Torvik P J, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol. 27(3) (1983) 201–210

    Article  MATH  Google Scholar 

  5. Baillie R T, Long memory processes and fractional integration in econometrics, J. Econom. 73 (1996) 55–59

    MathSciNet  MATH  Google Scholar 

  6. Barari A, Omidvar M and Ganji D D, Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations, Acta Appl. Math. 104 (2008) 161–171

    Article  MathSciNet  MATH  Google Scholar 

  7. Bohannan G W, Analog fractional order controller in temperature and motor control applications, J. Vib. Control 14 (2008) 1487–1498

    Article  MathSciNet  Google Scholar 

  8. Canuto C, Hussaini M, Quarteroni A and Zang T, Spectral methods in fluid dynamics (1988)

  9. Caponetto R, Dongola G, Fortuna L and Petras I, Fractional order systems, Sangapore: modeling and control applications (2010)

  10. Cattani C, Shannon wavelets for the solution of integro-differential equations, Math. Probl. Eng., vol. 2010, Article ID 408418, 22 pages (2010), https://doi.org/10.1155/2010/408418

  11. Cattani C and Kudreyko A, Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind, Appl. Math. Comput. 215 (2010) 4164–4171

    MathSciNet  MATH  Google Scholar 

  12. Cattani C, Shannon wavelets theory, Math. Probl. Eng., Volume 2008, Article ID 164808, 24 pages (2008), https://doi.org/10.1155/2008/164808

  13. Darania P and Ebadian A, A method for the numerical solution of the integro-differential equations, Appl. Math. Comput. 188 (2007) 657–668

    MathSciNet  MATH  Google Scholar 

  14. Das S, Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl. 57 (2009) 483–487

    Article  MathSciNet  MATH  Google Scholar 

  15. El-Mesiry A E M, El-Sayed A M A and El-Sakaa H A A, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. Comput. 160(3) (2005) 683–699

    MathSciNet  MATH  Google Scholar 

  16. El-Wakil S A, Elhanbaly A and Abdou M, Adomian decomposition method for solving fractional nonlinear differential equations, Appl. Math. Comput. 182 (2006) 313–324

    MathSciNet  MATH  Google Scholar 

  17. Erturk V and Momani S, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math. 215 (2008) 142–151

    Article  MathSciNet  MATH  Google Scholar 

  18. Erturk V S, S Momani and Odibat Z, Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 1642–1654

    Article  MathSciNet  MATH  Google Scholar 

  19. Guckenheimer J, Hoffman K and Weckesser W, The forced van der Pol equation I: the slow flow and its bifurcations, SIAM J. Appl. Dyn. Syst. 2(1) (2003) 1–35

    Article  MathSciNet  MATH  Google Scholar 

  20. Hashim I, Abdulaziz O and Momani S, Homotopy analysis method for fractional ivps, Commun. Nonlinear Sci. Numer. Simul 14 (2009) 674–684

    Article  MathSciNet  MATH  Google Scholar 

  21. He J H, Nonlinear oscillation with fractional derivative and its applications, in: International Conference on Vibrating Engineering 98 (1998) (China: Dalian) pp. 288–291

  22. He J H, Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol. 15(2) (1999) 86–90

    MathSciNet  Google Scholar 

  23. Heydari M H, Hooshmandasl M R, Ghaini M and Cattani C, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A 379 (2015) 71–76

    Article  MathSciNet  MATH  Google Scholar 

  24. Heydari M H, Hooshmandasl M R and Mohammadi F, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput. 234 (2014) 267–276

    MathSciNet  MATH  Google Scholar 

  25. Heydari M H, Hooshmandasl M R and Mohammadi F, Two-dimensional Legendre wavelets for solving time-fractional telegraph equation, Adv. Appl. Math. Mech. 6(2) (2014) 247–260

    Article  MathSciNet  MATH  Google Scholar 

  26. Heydari M H, Hooshmandasl M R, Maalek Ghaini F M and Mohammadi F, Wavelet collocation method for solving multi order fractional differential equations, J. Appl. Math., vol. 2012, Article ID 542401, 19 pages, https://doi.org/10.1155/2012/542401

  27. Heydari M H, Hooshmandasl M R, Mohammadi F and Cattani C, Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations, Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 37–48

    Article  MathSciNet  MATH  Google Scholar 

  28. Heydari M H, Hooshmandasl M R and Maalek Ghaini F M, Chebyshev wavelets method for solution of nonlinear fractional integro-differential equations in a large interval, Adv. Math. Phys., vol. 2013, Article ID 482083, 12 pages (2013)

  29. Heydari M H, Hooshmandasl M R, Cattani C and Ling M, Legendre wavelets method for solving fractional population growth model in a closed system, Math. Probl. Eng., vol. 2013, Article ID 161030, 8 pages, https://doi.org/10.1155/2013/161030

  30. Heydari M H, Hooshmandasl M R, Maalek F M Ghaini and Fereidouni F, Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem. 37 (2013) 1331–1338

    Article  MathSciNet  MATH  Google Scholar 

  31. Heydari M H, Hooshmandasl M R, Maalek Ghaini F M, Marji M F, Dehghan R, and Memarian M H, A new wavelet method for solving the Helmholtz equation with complex solution, Numer. Methods Partial Differ. Equ. (2015) 1–16

  32. Heydari M H, Hooshmandasl M R, Loghmani G B and Cattani C, Wavelets Galerkin method for solving stochastic heat equation, Int. J. Comput. Math. 93(9) (2016) 1579-1596

    Article  MathSciNet  MATH  Google Scholar 

  33. Heydari M H, Hooshmandasl M R and Maalek Ghaini F M, A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type, Appl. Math. Model. 38 (2014) 1597–1606

    Article  MathSciNet  MATH  Google Scholar 

  34. Jafari H, Khalique C M and Nazari M, An algorithm for the numerical solution of nonlinear fractional-order van der Pol oscillator equation, Math. Comput. Model. 55 (2012) 1782–1786

    Article  MathSciNet  MATH  Google Scholar 

  35. Li Y L and Sun N, Numerical solution of fractional differential equation using the generalized block puls operational matrix, Comput. Math. Appl. 62(3) (2011) 1046–1054

    Article  MathSciNet  MATH  Google Scholar 

  36. Li Y and Zhao W, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput. 216 (2010) 2276–2285

    MathSciNet  MATH  Google Scholar 

  37. Li Y, Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul. 15(9) (2009) 2284–2292

    Article  MathSciNet  MATH  Google Scholar 

  38. Mainardi F, Fractional calculus: some basic problems in continuum and statistical mechanics, edited by Carpinteri A, Mainardi F, Fractals and fractional calculus in continuum mechanics (1997) (New York: Springer) pp. 291–348

  39. Mandelbrot B, Some noises with \(1/f\) spectrum, a bridge between direct current and white noise, IEEE Trans. Inf. Theory 13(2) (1967) 289–98

    Article  MATH  Google Scholar 

  40. Meerschaert M and Tadjeran C, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006) 80–90

    Article  MathSciNet  MATH  Google Scholar 

  41. Momani S and Odibat Z, Numerical approach to differential equations of fractional order, J. Comput. Appl. Math. 207 (2007) 96–110

    Article  MathSciNet  MATH  Google Scholar 

  42. Odibat Z and Momani S, Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model. 32 (2008) 28–39

    Article  MATH  Google Scholar 

  43. Odibat Z and Shawagfeh N, Generalized Taylor’s formula, Appl. Math. Comput. 186 (2007) 286–293

    MathSciNet  MATH  Google Scholar 

  44. Panda R and Dash M, Fractional generalized splines and signal processing Signal Process. 86 (2006) 2340–2350

    Google Scholar 

  45. Podlubny I, The Laplace transform method for linear differential equations of fractional order (1997) eprint arXiv:funct-an/9710005

  46. Podlubny I, Fractional differential equations (1999) (San Diego: Academic Press)

  47. Rehman M and Kh R A, The Legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 16(11) (2011) 4163–4173

    Article  MathSciNet  MATH  Google Scholar 

  48. Rossikhin Y A and Shitikova M V, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev. 50 (1997) 15–67

    Article  Google Scholar 

  49. Sohrabi S, Comparision Chebyshev wavelets method with BPFs method for solving Abel’s integral equation, Ain Shams Eng. J. 2 (2011) 249–254

    Article  Google Scholar 

  50. Sweilam N H, Khader M M, and Al-Bar R F, Numerical studies for a multi-order fractional differential equation, Phys. Lett. A 371 (2007) 26–33

    Article  MathSciNet  MATH  Google Scholar 

  51. Sweilam N, Khader M and Al-Bar R, Numerical studies for a multi-order fractional differential equation, Phys. Lett. A 371 (2007) 26–33

    Article  MathSciNet  MATH  Google Scholar 

  52. Tripathi M P, Baranwal V K, Pandey R K and Singh O P, A new numerical algorithm to solve fractional differential equations based on operational matrix of generalized hat functions, Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 1327–1340

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang Y and Fan Q, The second kind Chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comput. 218 (2012) 8592–8601

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Hooshmandasl.

Additional information

Communicating Editor: Neela Nataraj

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M.H., Hooshmandasl, M.R. & Cattani, C. A new operational matrix of fractional order integration for the Chebyshev wavelets and its application for nonlinear fractional Van der Pol oscillator equation. Proc Math Sci 128, 26 (2018). https://doi.org/10.1007/s12044-018-0393-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-018-0393-4

Keywords

Mathematics Subject Classification

Navigation