Skip to main content

Advertisement

Log in

Some functional inequalities on non-reversible Finsler manifolds

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

A Correction to this article was published on 16 August 2021

This article has been updated

Abstract

We continue our study of geometric analysis on (possibly non-reversible) Finsler manifolds, based on the Bochner inequality established by Ohta and Sturm. Following the approach of the \(\Gamma \)-calculus of Bakry et al (2014), we show the dimensional versions of the Poincaré–Lichnerowicz inequality, the logarithmic Sobolev inequality, and the Sobolev inequality. In the reversible case, these inequalities were obtained by Cavalletti and Mondino (2015) in the framework of curvature-dimension condition by means of the localization method. We show that the same (sharp) estimates hold also for non-reversible metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Ambrosio L, Gigli N and Savaré G, Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab. 43 (2015) 339–404

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakry D, L’hypercontractivité et son utilisation en théorie des semigroupes (French), Lectures on probability theory (Saint-Flour, 1992), Lecture Notes in Math. 1581 (1994) (Berlin: Springer), pp. 1–114

  3. Bakry D, Gentil I and Ledoux M, Analysis and geometry of Markov diffusion operators (2014) (Cham: Springer)

    Book  MATH  Google Scholar 

  4. Bakry D and Ledoux M, Lévy–Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math. 123 (1996) 259–281

    MathSciNet  MATH  Google Scholar 

  5. Bao D, Chern S-S and Shen Z, An introduction to Riemann–Finsler geometry (2000) (New York: Springer-Verlag)

    Book  MATH  Google Scholar 

  6. Cavalletti F and Mondino A, Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math. 208 (2017) 803–849

  7. Cavalletti F and Mondino A, Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, Geom. Topol. 21 (2017) 603–645

  8. Erbar M, Kuwada K and Sturm K-T, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math. 201 (2015) 993–1071

    Article  MathSciNet  MATH  Google Scholar 

  9. Gigli N, Kuwada K and Ohta S, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math. 66 (2013) 307–331

    Article  MathSciNet  MATH  Google Scholar 

  10. Gigli N and Ledoux M, From log Sobolev to Talagrand: a quick proof, Discrete Contin. Dyn. Syst. 33 (2013) 1927–1935

    Article  MathSciNet  MATH  Google Scholar 

  11. Klartag B, Needle decompositions in Riemannian geometry, Mem. Amer. Math. Soc. 249 (2017)

  12. Kolesnikov A V and Milman E, Brascamp–Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal. 27 (2017) 1680–1702

  13. Ledoux M, The concentration of measure phenomenon (2001) (Providence, RI: American Mathematical Society)

    MATH  Google Scholar 

  14. Lichnerowicz A, Variétés riemanniennes à tenseur C non négatif (French), C. R. Acad. Sci. Paris Sér. A-B 271 (1970) A650–A653

    MATH  Google Scholar 

  15. Lott J and Villani C, Ricci curvature for metric-measure spaces via optimal transport, Ann. Math. 169 (2009) 903–991

    Article  MathSciNet  MATH  Google Scholar 

  16. Milman E, Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension, Trans. Amer. Math. Soc. 369 (2017) 3605–3637

  17. Milman E, Harmonic measures on the sphere via curvature-dimension, Ann. Fac. Sci. Toulouse Math. 26 (2017) 437–449

  18. Ohta S, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann. 343 (2009) 669–699

    Article  MathSciNet  MATH  Google Scholar 

  19. Ohta S, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009) 211–249

    Article  MathSciNet  MATH  Google Scholar 

  20. Ohta S, Optimal transport and Ricci curvature in Finsler geometry, Probabilistic approach to geometry, Adv. Stud. Pure Math., 57 (2010) (Tokyo: Math. Soc. Japan), pp. 323–342

  21. Ohta S, Ricci curvature, entropy, and optimal transport. Optimal transportation, London Math. Soc. Lecture Note Ser., 413 (2014) (Cambridge: Cambridge Univ. Press), pp. 145–199

  22. Ohta S, \((K,N)\)-convexity and the curvature-dimension condition for negative \(N\), J. Geom. Anal. 26 (2016) 2067–2096

    Article  MathSciNet  MATH  Google Scholar 

  23. Ohta S, Needle decompositions and isoperimetric inequalities in Finsler geometry, J. Math. Soc. Japan (to appear), available at arXiv:1506.05876

  24. Ohta S, A semigroup approach to Finsler geometry: Bakry–Ledoux’s isoperimetric inequality, Preprint (2016), available at arXiv:1602.00390

  25. Ohta S, Nonlinear geometric analysis on Finsler manifolds, Eur. J. Math. (to appear), available at arXiv:1704.01257

  26. Ohta S and Sturm K-T, Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009) 1386–1433

    Article  MathSciNet  MATH  Google Scholar 

  27. Ohta S and Sturm K-T, Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal. 204 (2012) 917–944

    Article  MathSciNet  MATH  Google Scholar 

  28. Ohta S and Sturm K-T, Bochner–Weitzenböck formula and Li–Yau estimates on Finsler manifolds, Adv. Math. 252 (2014) 429–448

    Article  MathSciNet  MATH  Google Scholar 

  29. Otto F and Villani C Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000) 361–400

    Article  MathSciNet  MATH  Google Scholar 

  30. Profeta A, The sharp Sobolev inequality on metric measure spaces with lower Ricci curvature bounds, Potential Anal. 43 (2015) 513–529

    Article  MathSciNet  MATH  Google Scholar 

  31. Qian Z, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997) 235–242

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen Y-B and Shen Z, Introduction to modern Finsler geometry (2016) (Singapore: World Scientific Publishing Co.)

    Book  MATH  Google Scholar 

  33. Shen Z, Lectures on Finsler geometry (2001) (Singapore: World Scientific Publishing Co.)

    Book  MATH  Google Scholar 

  34. Sturm K-T, On the geometry of metric measure spaces, I, Acta Math. 196 (2006) 65–131

    Article  MathSciNet  MATH  Google Scholar 

  35. Sturm K-T, On the geometry of metric measure spaces, II, Acta Math. 196 (2006) 133–177

    Article  MathSciNet  MATH  Google Scholar 

  36. Villani C, Optimal transport, old and new (2009) (Berlin: Springer-Verlag)

    Book  MATH  Google Scholar 

  37. Wang G and Xia C, A sharp lower bound for the first eigenvalue on Finsler manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013) 983–996

    Article  MathSciNet  MATH  Google Scholar 

  38. Wylie W, A warped product version of the Cheeger–Gromoll splitting theorem, Trans. Amer. Math. Soc. 369 (2017) 6661–6681

  39. Wylie W and Yeroshkin D, On the geometry of Riemannian manifolds with density, Preprint (2016), available at arXiv:1602.08000

  40. Xia Q, A sharp lower bound for the first eigenvalue on Finsler manifolds with nonnegative weighted Ricci curvature, Nonlinear Anal. 117 (2015) 189–199

    Article  MathSciNet  MATH  Google Scholar 

  41. Yin S-T and He Q, The first eigenvalue of Finsler \(p\)-Laplacian, Differential Geom. Appl. 35 (2014) 30–49

    Article  MathSciNet  MATH  Google Scholar 

  42. Yin S and He Q, Eigenvalue comparison theorems on Finsler manifolds, Chin. Ann. Math. Ser. B 36 (2015) 31–44

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by JSPS Grant-in-Aid for Scientific Research (KAKENHI) 15K04844.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Ichi Ohta.

Additional information

Communicating Editor: Parameswaran Sankaran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohta, SI. Some functional inequalities on non-reversible Finsler manifolds. Proc Math Sci 127, 833–855 (2017). https://doi.org/10.1007/s12044-017-0357-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12044-017-0357-0

Keywords

Mathematics Subject Classification

Navigation