Skip to main content
Log in

Some spherical analysis related to the pairs (U(n), H n ) and (U(p,q), H n ), p + q = n

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we define the normalized spherical transform associated with the generalized Gelfand pair (U(p,q),H n ), where H n is the Heisenberg group 2n + 1-dimensional and p+q=n. We show that the normalized spherical transform \(\mathcal {F}(f)\) of a Schwartz function f on H n restricted to the spectrum of the Gelfand pair (U(n),H n ) is the Gelfand transform \(\hat {g}\) of a radial Schwartz function g on H n . Moreover, by the Godement–Plancherel inversion formula the function g can be recovered explicitly from \(\mathcal {F}(f)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astengo F, Di Blasio B and Ricci F, Gelfand transforms of polyradial Schwartz functions on the Heisenberg group, J. Funct. Anal. 251 (2007) 772–791

  2. Benson C, Jenkins J and Ratcliff G, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math. 71 (1996) 305–328

  3. Benson C, Jenkins J and Ratcliff G, The spherical transform of a Schwartz function on the Heisenberg group, J. Funct. Anal. 154 (1998) 379–423

  4. Campos S and Saal L, The spherical transform associated with the generalized Gelfand pair ((U(p,q),H n ),p+q=n), submitted to J. Lie Theory

  5. Godoy T and Saal L, L 2 spectral descomposition on the Heisenberg group associated to the action of U(p,q), Pacific J. Math. 193 (2000) 327–353

  6. Godoy T and Saal L, A spherical transform on Schwartz functions on the Heisenberg group associated to the action of U(p,q), Colloq. Math. 106 (2006) 231–255

  7. Godoy T and Saal L, On the spectrum of the generalized Gelfand pair (U(p,q),H n ), p +q=n, Math. Scand. 105 (2009) 171–187

  8. Szegö G, Orthogonal polynomials, in: Colloquium Publications 23 (1932) (American Mathematical Society) pp. 100–103

  9. Tengstrand A, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960) 201–218

  10. Vand Dijk G and Mokni K, Harmonic analysis on Gelfand pairs associated with hyperbolic spaces, Russian J. Math. Phys. 5 (2) (1997) 1–13

  11. Vand Dijk G, Group representations on the spaces of distributions, Russian J. Math. Phys. 2 (1) (1994) 57–68

  12. Veneruso A, Schwartz kernels on the Heisenberg group, Bollettino U.M.I 6B 8 (2003) 657–666

Download references

Acknowledgement

This work was partially supported by CONICET, SECYT-UNC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SILVINA CAMPOS.

Additional information

Communicating Editor: Parameswaran Sankaran

Appendix

Appendix

From now on, we will use the following identities that Laguerre polynomials satisfy

$$ L_{k}^{(\alpha-1)}(x)=L_{k}^{(\alpha)}(x)-L_{k-1}^{(\alpha)}(x), $$
(A.1)
$$ \frac{\mathrm{d}}{\mathrm{d}x}L_{k}^{(\alpha)}(x)=x^{-1}[k \ L_{k}^{(\alpha)}(x)-(k+\alpha) \ L_{k-1}^{(\alpha)}(x)], $$
(A.2)
$$ kL_{k}^{(\alpha)}(0)=(k+\alpha) \ L_{k-1}^{(\alpha)}(0), $$
(A.3)
$$ (k+1)L_{k+1}^{(\alpha)}(x)=(-x+2(k+1)+\alpha-1) \ L_{k}^{(\alpha)}(x)-(k+\alpha) \ L_{k-1}^{(\alpha)}(x). $$
(A.4)

Lemma A.1.

Let j be an integer number such that 0≤j≤n−2 and let \(d_{j,k}^{n}\) be as in ( 3.5 ). Then for all \(k\in \mathbb {N},\) \(d_{j,k}^{n}-d_{j,k-1}^{n}=-d_{j,k}^{n-1}\).

Proof.

By equalities (A.3) and (A.1) we have that

$$\begin{array}{@{}rcl@{}} d_{j,k}^{n}-d_{j,k-1}^{n}&=&4^{j}\sum\limits_{i=j}^{n-2}\frac{1}{2^{i}}\left( \begin{array}{c}{i}\\{j}\end{array}\right)(-1)^{n-i-2}\left[L_{k+i+1}^{(n-i-2)}(0)-L_{k+i}^{(n-i-2)}(0)\right]\\ &=&-4^{j}\sum\limits_{i=j}^{n-3}\frac{1}{2^{i}}\left( \begin{array}{c}{i}\\{j}\end{array}\right)(-1)^{n-i-3}L_{k+i+1}^{(n-i-3)}(0)\\ &=&-d_{j,k}^{n-1}. \end{array} $$

Lemma A.2.

For \(i\in \mathbb {N}\) and \(k\in \mathbb {N}\) , \(D^{i}(L_{k}^{(0)})-D^{i}(L_{k-1}^{(0)})=D^{i+1}(L_{k}^{(0)})\).

Proof.

By (3.6) and \(\left (\begin {array}{c}{i}\\[-2pt]{l}\end {array}\right )+\left (\begin {array}{c}{i}\\[-2pt]{l-1}\end {array}\right )=\left (\begin {array}{c}{i+1}\\[-2pt]{l}\end {array}\right )\), we obtain that

$$\begin{array}{@{}rcl@{}} {}D^{i}(L_{k}^{(0)})-D^{i}(L_{k-1}^{(0)})&=&\sum\limits_{l=0}^{\min\{k,i\}} (-1)^{l}\left( \begin{array}{c}{i}\\{l}\end{array}\right)L_{k-l}^{(0)}-\sum\limits_{l=0}^{\min\{k-1,i\}} (-1)^{l}\left( \begin{array}{c}{i}\\{l}\end{array}\right)L_{k-1-l}^{(0)}\\ &=&\sum\limits_{l=0}^{\min\{k,i\}} (-1)^{l}\left( \begin{array}{c}{i}\\{l}\end{array}\right)L_{k-l}^{(0)}+\sum\limits_{l=1}^{\min\{k-1,i\}+1} (-1)^{l}\left( \begin{array}{c}{i}\\{l-1}\end{array}\right)L_{k-l}^{(0)}\\ &=&\sum\limits_{l=0}^{\min\{k,i\}} (-1)^{l}\left( \begin{array}{c}{i}\\{l}\end{array}\right)L_{k-l}^{(0)}+\sum\limits_{l=1}^{\min\{k,i+1\}} (-1)^{l}\left( \begin{array}{c}{i}\\{l-1}\end{array}\right)L_{k-l}^{(0)}. \end{array} $$

If min{k, i} = min{k, i + 1}, then

$$\begin{array}{@{}rcl@{}} D^{i}(L_{k}^{(0)})-D^{i}(L_{k-1}^{(0)})&=&\sum\limits_{l=1}^{\min\{k,i+1\}} (-1)^{l}\left[\left( \begin{array}{c}{i}\\{l}\end{array}\right)+\left( \begin{array}{c}{i}\\{l-1}\end{array}\right)\right]L_{k-l}^{(0)}+L_{k}^{(0)}\\ &=&\sum\limits_{l=0}^{\min\{k,i+1\}} (-1)^{l}\left( \begin{array}{c}{i+1}\\{l}\end{array}\right)L_{k-l}^{(0)}\\ &=&D^{i+1}L_{k}^{(0)}. \end{array} $$

If min{k, i} + 1 = i + 1 = min{k, i + 1} (i <k), then

$$\begin{array}{@{}rcl@{}} {}D^{i}(L_{k}^{(0)})-D^{i}(L_{k-1}^{(0)})&=&L_{k}^{(0)}+\sum\limits_{l=1}^{i} (-1)^{l}\left[\left( \begin{array}{c}{i}\\{l}\end{array}\right)+\left( \begin{array}{c}{i}\\{l-1}\end{array}\right)\right]L_{k-l}^{(0)}+(-1)^{i+1}L_{k-(i+1)}^{(0)}\\ &=&L_{k}^{(0)}+\sum\limits_{l=1}^{i} (-1)^{l}\left( \begin{array}{c}{i+1}\\{l}\end{array}\right)L_{k-l}^{(0)}+(-1)^{i+1}L_{k-\min\{k,i+1\}}^{(0)}\\ &=&\sum\limits_{l=0}^{i+1} (-1)^{l}\left( \begin{array}{c}{i+1}\\{l}\end{array}\right)L_{k-l}^{(0)}\\ &=&\sum\limits_{l=0}^{\min\{k,i+1\}} (-1)^{l}\left( \begin{array}{c}{i+1}\\{l}\end{array}\right)L_{k-l}^{(0)}\\ &=&D^{i+1}L_{k}^{(0)}. \end{array} $$

Lemma A.3.

For n≥3, let \(d_{j,k}^{n}\) be as in ( 3.5 ). Then

$$\begin{array}{@{}rcl@{}} (n-j-2) \ d_{j,k}^{n}+(k+n-1) \ d_{j,k}^{n-1}=\frac{j+1}{4} \ d_{j+1,k}^{n}. \end{array} $$

Proof.

By (3.5) and (A.1) we have that

$$\begin{array}{@{}rcl@{}} &&{}(n-j-2) \ d_{j,k}^{n}+(k+n-1) \ d_{j,k}^{n-1}\\ &&{\kern1.3pc}=4^{j}\sum\limits_{i=j}^{n-2}\frac{1}{2^{i}}\left( \begin{array}{c}{i}\\{j}\end{array}\right)(-1)^{n-i-2}(n-j-2)L_{k+i+1}^{(n-i-2)}(0)\\ &&{\kern2.2pc}+4^{j}\sum\limits_{i=j}^{n-3}\frac{1}{2^{i}}\left( \begin{array}{c}{i}\\{j}\end{array}\right)(-1)^{n-i-3}(k+n-1)L_{k+i+1}^{(n-i-3)}(0)\\ &&{\kern1.3pc}=4^{j}\sum\limits_{i=j}^{n-2}\frac{1}{2^{i}}\left( \begin{array}{c}{i}\\{j}\end{array}\right)(-1)^{n-i-2}(n-j-2)L_{k+i+1}^{(n-i-2)}(0)\\ &&{\kern2.2pc}-4^{j}\sum\limits_{i=j}^{n-2}\frac{1}{2^{i}}\left( {}\begin{array}{c}{i}\\{j}\end{array}{}\right){}({}-1{})^{n-i-2}(k{}+{}n{}-{}1)[L_{k+i+1}^{(n-i-2)}(0){}-{}L_{k+i}^{(n-i-2)}(0)]. \end{array} $$

By (A.3), (k + n − 1)L \(_{k+i}^{(n-i-2)}\)(0) = (k + i + 1)L \(_{k+i+1}^{(n-i-2)}\)(0) and so

$$\begin{array}{@{}rcl@{}} &&{}(n-j-2)L_{k+i+1}^{(n-i-2)}(0)-(k+n-1)[L_{k+i+1}^{(n-i-2)}(0)-L_{k+i}^{(n-i-2)}(0)]\\ &&{\kern-4.3pc}=(n-j-2)L_{k+i+1}^{(n-i-2)}(0)-(k+n-1)L_{k+i+1}^{(n-i-2)}(0)+(k+i+1)L_{k+i+1}^{(n-i-2)}(0)\\ &&{\kern-4.3pc}=(i-j)L_{k+i+1}^{(n-i-2)}(0). \end{array} $$

Thus,

$$\begin{array}{@{}rcl@{}} {}(n-j-2)d_{j,k}^{n}+(k+n-1)d_{j,k}^{n-1}&=&4^{j}\sum\limits_{i=j}^{n-2}\frac{1}{2^{i}}(i-j)\left( \begin{array}{c}{i}\\{j}\end{array}\right)(-1)^{n-i-2}L_{k+i+1}^{(n-i-2)}(0)\\ &=&4^{j}\sum\limits_{i=j+1}^{n-2}\frac{1}{2^{i}}(j+1)\left( \begin{array}{c}{i}\\{j+1}\end{array}\right)(-1)^{n-i-2}L_{k+i+1}^{(n-i-2)}(0)\\ &=&\frac{j+1}{4}4^{j+1}\sum\limits_{i=j+1}^{n-2}\frac{1}{2^{i}}\left( \begin{array}{c}{i}\\{j+1}\end{array}\right)(-1)^{n-i-2}L_{k+i+1}^{(n-i-2)}(0)\\ &=&\frac{j+1}{4} d_{j+1,k}^{n}, \end{array} $$

where in the second equality we have used \((j+1)\left (\begin {array}{c}{i}\\{j+1}\end {array}\right )=(i-j)\left (\begin {array}{c}{i}\\{j}\end {array}\right )\). □

Lemma A.4.

Let \(j\in \mathbb {N}_{0}\) . For φ=φ(s), we denote \(\langle \delta ^{j},\varphi \rangle =(-1)^{j}\frac {d^{j}\varphi }{ds^{j}}|_{s=0}\) . Then ,

$$ \langle\delta^{(j)},N(-\bar{\mathcal{A}}f)(\cdot,\hat{\lambda})\rangle=\frac{\partial}{\partial\lambda}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle+\frac{j}{4}\langle\delta^{(j-1)},Nf(\cdot,\hat{\lambda})\rangle $$
(A.5)

and

$$ \langle\delta^{(j)},N(\mathcal{A}f)(\cdot,\hat{\lambda})\rangle=\frac{\partial}{\partial\lambda}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle-\frac{j}{4}\langle\delta^{(j-1)},Nf(\cdot,\hat{\lambda})\rangle. $$
(A.6)

Proof.

By \(N(\mathcal {A}f)=(-it+\frac {s}{4})Nf\), \(N(-\bar {\mathcal {A}}f)=(-it-\frac {s}{4})Nf\) and definition of distribution δ (j) we have that

$$\begin{array}{@{}rcl@{}} {}\langle\delta^{(j)},N(-\bar{\mathcal{A}}f)(\cdot,\hat{\lambda})\rangle&=& \langle\delta^{(j)},(-it-\frac{s}{4})Nf(\cdot,\hat{\lambda})\rangle\\ &=&(-1)^{j}\frac{\partial^{j}}{\partial s^{j}}\left( (-\frac{s}{4}-it)Nf(s,\hat{\lambda})\right)\bigg|_{s=0}\\ &=&(-1)^{j}{\int}_{-\infty}^{\infty} \mathrm{e}^{-i\lambda t} \frac{\partial^{j}}{\partial s^{j}}\left( (-\frac{s}{4}-it)Nf(s,t)\right)\bigg|_{s=0} \ \mathrm{d}t\\ &=&(-1)^{j}{\int}_{-\infty}^{\infty} \mathrm{e}^{-i\lambda t} \left[(-it) \frac{\partial^{j}Nf}{\partial s^{j}}(0,t)-j \ \frac{1}{4}\frac{\partial^{j-1}Nf}{\partial s^{j-1}}(0,t)\right]\!\mathrm{d}t\\ &=&\frac{\partial}{\partial\lambda}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle+\frac{j}{4}(-1)^{j-1}{\int}_{-\infty}^{\infty} \mathrm{e}^{-i\lambda t}\frac{\partial^{j-1}Nf}{\partial s^{j-1}}(0,t)\mathrm{d}t\\ &=&\frac{\partial}{\partial\lambda}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle+\frac{j}{4}\langle\delta^{(j-1)},Nf(\cdot,\hat{\lambda})\rangle. \end{array} $$

The proof for (A.6) is completely similar. □

PROPOSITION A.5

Let G be as in (3.2) and \(k\in \mathbb {N}_{0}\). Then

$${}\frac{\partial G}{\partial\lambda}(\lambda,k)= \left\{\begin{array}{ll} -(k+n-1) \mathcal{F}_{n-1}(f)(\lambda,k+q_{n-1})+\mathcal{F}_{n}(-\overline{\mathcal{A}}f)(\lambda,k+q_{n}),&\text{if} \ \lambda>0,\\ \\ (k+n-1) \mathcal{F}_{n-1}(f)(\lambda,k+q_{n-1})+\mathcal{F}_{n}(\mathcal{A}f)(\lambda,k+q_{n}),&\text{if} \ \lambda<0. \end{array}\right. $$

Proof.

By (A.2) and (A.1) we have that

$$\begin{array}{@{}rcl@{}} &&{}\frac{\partial}{\partial\lambda}\left( (-1)^{n-1}|\lambda|^{n-1}{\int}_{\mathbb{R}}{\int}_{s>0}\mathrm{e}^{-it\lambda}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right)Nf(s,t) \ \mathrm{d}s\mathrm{d}t\right)\\ &&{}=-(n-1)sg(\lambda)(-|\lambda|)^{n-2}{\int}_{\mathbb{R}}{\int}_{s>0}\mathrm{e}^{-it\lambda}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right)Nf(s,t) \ \mathrm{d}s\mathrm{d}t\\ &&{}+(-1)^{n-1}|\lambda|^{n-1}{\int}_{\mathbb{R}}{\int}_{s>0}(-sg(\lambda)\frac{s}{4}-it)\mathrm{e}^{-it\lambda}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right)Nf(s,t) \ \mathrm{d}s\mathrm{d}t\\ &&{}-sg(\lambda)(-|\lambda|)^{n-2}{\int}_{\mathbb{R}}{\int}_{s>0}\mathrm{e}^{-it\lambda}\mathrm{e}^{-\frac{s|\lambda|}{4}}\left[k L_{k}^{(n-1)}-(k+n-1)L_{k-1}^{(n-1)}\right]\left( \frac{s|\lambda|}{2}\right)Nf(s,t) \ \mathrm{d}s\mathrm{d}t\\ &&{}=\hspace{.8pt}-sg(\lambda)(k+n-1)(-1)^{n-2}|\lambda|^{n-2}{\int}_{s>0}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-2)}\left( \frac{s|\lambda|}{2}\right)Nf(s,\hat{\lambda}) \ \mathrm{d}s \\ &&{}+(-1)^{n-1}|\lambda|^{n-1}{\int}_{s>0}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right)(-sg(\lambda)\frac{s}{4}-it) Nf(s,\hat{\lambda}) \ \mathrm{d}s, \end{array} $$

So,

$$\begin{array}{@{}rcl@{}} &&{}\frac{\partial G}{\partial\lambda}(\lambda,k)=-sg(\lambda)(k+n-1)(-1)^{n-2}|\lambda|^{n-2}{\int}_{s>0}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-2)}\left( \frac{s|\lambda|}{2}\right)Nf(s,\hat{\lambda})\!\! \ \mathrm{d}s \\ &&{}+(-1)^{n-1}|\lambda|^{n-1}{\int}_{s>0}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right)(-sg(\lambda)\frac{s}{4}-it) Nf(s,\hat{\lambda}) \mathrm{d}s \\ &&{}+sg(\lambda) \sum\limits_{j=0}^{n-3} d_{j,k}^{n}(n-j-2)|\lambda|^{n-j-3}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle\\ &&{}+\sum\limits_{j=0}^{n-2} d_{j,k}^{n} |\lambda|^{n-j-2}\frac{\partial}{\partial\lambda}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle, \end{array} $$

and for λ>0, we get

$$\begin{array}{@{}rcl@{}} \frac{\partial G}{\partial\lambda}(\lambda,k){}&=&{}-{}({}k{}+n{}-{}1){}({}-{}1{})^{n-2}|\lambda|^{n-2}{}{\int}_{s>0}\mathrm{e}^{-s|\lambda|/4}L_{k}^{(n-2)}{}\left( \frac{s|\lambda|}{2}\right)Nf(s,\hat{\lambda}) \mathrm{d}s\\ &&{\kern-.3pc}+(-1)^{n-1}|\lambda|^{n-2}{\int}_{s>0}\mathrm{e}^{-s|\lambda|/4}L_{k}^{(n-2)}\left( \frac{s|\lambda|}{2}\right)N(-\overline{\mathcal{A}}f)(s,\hat{\lambda}) \mathrm{d}s\\ &&{\kern-.3pc}+ \sum\limits_{j=0}^{n-3} d_{j,k}^{n}(n-j-2)|\lambda|^{n-j-3}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle\\ &&{\kern-.3pc}+\sum\limits_{j=0}^{n-2} d_{j,k}^{n} |\lambda|^{n-j-2}\frac{\partial}{\partial\lambda}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle. \end{array} $$

Then, we add and subtract the following singular parts:

$${}(k+n-1){\sum}_{j=0}^{n-3}d_{j,k}^{n-1} |\lambda|^{n-j-3}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle{} \quad\text{and} \quad{} {\sum}_{j=0}^{n-2}d_{j,k}^{n}|\lambda|^{n-j-2}\langle\delta^{(j)},N(-\overline{\mathcal{A}}f)(\cdot,\hat{\lambda})\rangle $$

and by Lemmas A.3 and A.4, we obtain that

$$\begin{array}{@{}rcl@{}} \frac{\partial F}{\partial\lambda}(\lambda,k){}&=&{}-(k+n-1) \mathcal{F}_{n-1}(f)(\lambda,k+q_{n-1})+\mathcal{F}_{n}(-\overline{\mathcal{A}}f)(\lambda,k+q_{n})\\ &&{}+{} \sum\limits_{j=0}^{n-3}{} \left[{}(n{}-{}j{}-{}2)d_{j,k}^{n}{}+{}(k{}+{}n{}-{}1)d_{j,k}^{n-1}{}\right]|\lambda|^{n-j-3}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle\\ &&{}+{}\sum\limits_{j=0}^{n-2} d_{j,k}^{n} |\lambda|^{n-j-2}{}\left[{}\frac{\partial}{\partial\lambda}\langle\delta^{(j)},{}Nf(\cdot,\hat{\lambda})\rangle{}-{}\langle\delta^{(j)},{}N(-\overline{\mathcal{A}}f)(\cdot,\hat{\lambda})\rangle\right]\\ {}&=&{}-(k+n-1) \mathcal{F}_{n-1}(f)(\lambda,k+q_{n-1})+\mathcal{F}_{n}(-\overline{\mathcal{A}}f)(\lambda,k+q_{n}). \end{array} $$

On other hand, for λ<0, we have that

$$\begin{array}{@{}rcl@{}} \frac{\partial F}{\partial\lambda}(\lambda,k){}&=&{}(k{}+{}n{}-{}1)({}-{}1)^{n-2}|\lambda|^{n-2}{}{\int}_{s>0}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-2)}\left( {}\frac{s|\lambda|}{2}{}\right)Nf(s,\hat{\lambda})\mathrm{d}s \\ &&{}+(-1)^{n-1}|\lambda|^{n-1}{\int}_{s>0}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right)N\left( \mathcal{A}f\right)(s,\hat{\lambda}) {}\mathrm{d}s \\ &&{}-\sum\limits_{j=0}^{n-3} d_{j,k}^{n}(n-j-2)|\lambda|^{n-j-3}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle\\ &&{}+\sum\limits_{j=0}^{n-2} d_{j,k}^{n} |\lambda|^{n-j-2}\frac{\partial}{\partial\lambda}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle. \end{array} $$

Then, we add and subtract the singular parts

$${}(k+n-1)\sum\limits_{j=0}^{n-3}d_{j,k}^{n-1} |\lambda|^{n-j-3}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle \ \quad\text{and} \quad \sum\limits_{j=0}^{n-2}d_{j,k}^{n}|\lambda|^{n-j-2}\langle\delta^{(j)},N(\mathcal{A}f)(\cdot,\hat{\lambda})\rangle $$

and by Lemmas A.3 and A.4, we get

$$\begin{array}{@{}rcl@{}} \frac{\partial F}{\partial\lambda}(\lambda,k)&=&{}(k+n-1) \mathcal{F}_{n-1}(f)(\lambda,k+q_{n-1})+\mathcal{F}_{n}(\mathcal{A}f)(\lambda,k+q_{n})\\ &&{\kern-.5pc}-{}\sum\limits_{j=0}^{n-3}[(n{}-{}j{}-{}2)d_{j,k}^{n}{}+{}(k{}+{}n{}-{}1)d_{j,k}^{n-1}]|\lambda|^{n-j-3}\langle\delta^{(j)},{}N{}f(\cdot,{}\hat{\lambda})\rangle\\ &&{\kern-.5pc}+{}\sum\limits_{j=0}^{n-2} d_{j,k}^{n} |\lambda|^{n-j-2}\left[\frac{\partial}{\partial\lambda}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle{}-{}\langle\delta^{(j)},N(\mathcal{A}f)(\cdot,\hat{\lambda})\rangle\right]\\ &=&{}(k+n-1) \mathcal{F}_{n-1}(f)(\lambda,k+q_{n-1})+\mathcal{F}_{n}(\mathcal{A}f)(\lambda,k+q_{n}). \end{array} $$

Lemma A.6.

Let n≥2 and \(k\in \mathbb {N}_{0}\). Then

  1. (a)

    \((k+n-1)L_{k}^{(n-2)}(x)-(k+n)L_{k+1}^{(n-2)}(x)=x \ L_{k}^{(n-1)}(x)-(n-1)L_{k+1}^{(n-2)}(x)\),

  2. (b)

    \((k+n-1)d_{j,k}^{n-1}-(k+n)d_{j,k+1}^{n-1}=-(n-1)d_{j,k+1}^{n-1}+\frac {j+1}{2}d_{j+1,k}^{n}\).

Proof.

  1. (a)

    By (A.1), we obtain that

    $$\begin{array}{@{}rcl@{}} &&{\kern-2.6pc}(k+n-1)L_{k}^{(n-2)}(x)-(k+n)L_{k+1}^{(n-2)}(x)\\ &&{\kern-2.3pc}~~~=(k+n-1)[L_{k}^{(n-1)}(x)-L_{k-1}^{(n-1)}(x)]-(k+n)[L_{k+1}^{(n-1)}(x)-L_{k}^{(n-1)}(x)]\\ &&{\kern-2.3pc}~~~=-(k+n)L_{k+1}^{(n-1)}(x)+(2(k\!+n)-1)L_{k}^{(n-1)}(x)-(k\!+n-1)L_{k-1}^{(n-1)}(x)\\ &&{\kern-2.3pc}~~~=-(k+1)L_{k+1}^{(n-1)}(x)-(n-1)L_{k+1}^{(n-1)}(x)+(2(k+n)-1)L_{k}^{(n-1)}(x)\\ &&{\kern-1.3pc}~~-(k+n-1)L_{k-1}^{(n-1)}(x). \end{array} $$

    Then, by (A.4) and (A.1), we get

    $$\begin{array}{@{}rcl@{}} &&{\kern-3.1pc}(k+n-1)L_{k}^{(n-2)}(x)-(k+n)L_{k+1}^{(n-2)}(x)\\ &&{\kern-2.3pc}=-(-x+2k+2+n-1-1)L_{k}^{(n-1)}(x)+(k+1+n-1-1)L_{k-1}^{(n-1)}(x)\\ &&{\kern-2.3pc}~~~~-(n-1)L_{k+1}^{(n-1)}(x)+(2(k+n)-1)L_{k}^{(n-1)}(x)-(k+n-1)L_{k-1}^{(n-1)}(x)\\ &&{\kern-2.3pc}=-(n-1)L_{k+1}^{(n-1)}(x)+(n-1)L_{k}^{(n-1)}(x)+x \ L_{k}^{(n-1)}(x)\\ &&{\kern-2.3pc}=-(n-1)L_{k+1}^{(n-2)}(x)+x \ L_{k}^{(n-1)}(x). \end{array} $$
  2. (b)

    We take \(\bar {k}=k+i+1\) and \(\bar {n}=n-i-1\). By (a), we have that

    $$\begin{array}{@{}rcl@{}} {\kern-1.3pc}(\bar{k}+\bar{n}-1)L_{\bar{k}}^{(\bar{n}-2)}(0)-(\bar{k}+\bar{n})L_{\bar{k}+1}^{(\bar{n}-2)}(0)=-(\bar{n}-1)L_{\bar{k}+1}^{(\bar{n}-2)}(0). \end{array} $$

    Therefore, if we replace \(\bar {k},\bar {n}\) then

    $$\begin{array}{@{}rcl@{}} &&{\kern-2.3pc}(k+n-1)L_{k+i+1}^{(n-i-3)}(0)-(k+n)L_{k+i+2}^{(n-i-3)}(0)=-(n-i-2)L_{k+i+2}^{(n-i-3)}(0)\\ &&{}~~~=-(n-1)L_{k+i+2}^{(n-i-3)}(0)+(i+1)L_{k+i+2}^{(n-i-3)}(0). \end{array} $$

    So, by (3.5), the last equality and \(\left (\begin {array}{c}{i}\\[-3pt]{j}\end {array}\right )(i+1)=\left (\begin {array}{c}{i+1}\\[-3pt]{j+1}\end {array}\right )(j+1),\) we obtain that

    $$\begin{array}{@{}rcl@{}} &&{\kern-3.1pc}(k+n-1) \ d_{j,k}^{n-1}-(k+n) \ d_{j,k+1}^{n-1}\\ &&{\kern-2.3pc}=4^{j}\sum\limits_{i=j}^{n-3}\frac{1}{2^{i}}\left( \begin{array}{c}{i}\\[-3pt]{j}\end{array}\right)(-1)^{n-i-3}[(k\,+\,n\,-\,1)L_{k+i+1}^{(n-i-3)}(0)\,-\,(k+n)L_{k+i+2}^{(n-i-3)}(0)]\\ &&{\kern-2.3pc}=4^{j}\sum\limits_{i=j}^{n-3}\frac{1}{2^{i}}\left( \begin{array}{c}{i}\\[-3pt]{j}\end{array}\right)(-1)^{n-i-3}[-(n-1)L_{k+i+2}^{(n-i-3)}(0)+(i+1)L_{k+i+2}^{(n-i-3)}(0)]\\ &&{\kern-2.3pc}=-(n-1) \ d_{j,k+1}^{n-1}+4^{j}\sum\limits_{i=j}^{n-3}\frac{1}{2^{i}}\left( \begin{array}{c}{i+1}\\[-3pt]{j+1}\end{array}\right)(j+1)(-1)^{n-i-3}L_{k+i+2}^{(n-i-3)}(0)\\ &&{\kern-2.3pc}=-(n-1) \ d_{j,k+1}^{n-1}+\frac{j+1}{2} \ d_{j+1,k}^{n}. \end{array} $$

Lemma A.7.

Let n≥2 and \(f\in \mathcal {S}(H_{n})\) . Then

$$\begin{array}{@{}rcl@{}} &&{}\mathcal{F}_{n}(-\bar{\mathcal{A}}f)(k,\lambda)-\mathcal{F}_{n}(\mathcal{A}f)(k,\lambda)\\ &&{\kern.1pc}=-(-1)^{n-1}|\lambda|^{n-1}{\int}_{s>0}\mathrm{e}^{-s|\lambda|/4}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right) \ \frac{s}{2} \ Nf(s,\hat{\lambda}) \mathrm{d}s \\ && \ \ \ \ \ \ \ +\sum\limits_{j=0}^{n-3}\frac{j+1}{2} \ d_{j+1,k}^{n} \ |\lambda|^{n-j-3}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle. \end{array} $$

Proof.

$$\begin{array}{@{}rcl@{}} &&{\kern-1.5pc}\mathcal{F}_{n}(-\bar{\mathcal{A}}f)(s,\lambda)-\mathcal{F}_{n}(\mathcal{A}f)(s,\lambda)\\ &&{}=(-|\lambda|)^{n-1}{\int}_{s>0}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right) [N(-\bar{\mathcal{A}}f)(s,\hat{\lambda})-N(\mathcal{A}f)(s,\hat{\lambda})] \mathrm{d}s\\ &&{}~~~~+\sum\limits_{j=0}^{n-2}d_{j,k}^{n}|\lambda|^{n-j-2}\left[\langle\delta^{(j)},N(-\bar{\mathcal{A}}f)(\cdot,\hat{\lambda})\rangle-\langle\delta^{(j)},N(\mathcal{A}f)(\cdot,\hat{\lambda})\rangle\right]\\ &&{}=(-1)^{n-1}|\lambda|^{n-1}{\int}_{s>0}\mathrm{e}^{-\frac{s|\lambda|}{4}}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right) \left( -\frac{s}{2}\right)Nf(s,\hat{\lambda}) \ \mathrm{d}s\\ &&{}~~~~+\sum\limits_{j=1}^{n-2}\frac{j}{2} \ d_{j,k}^{n}|\lambda|^{n-j-2}\langle\delta^{(j-1)},Nf(\cdot,\hat{\lambda})\rangle\\ &&{}=-(-1)^{n-1}|\lambda|^{n-1}{\int}_{s>0}\mathrm{e}^{-s|\lambda|/4}L_{k}^{(n-1)}\left( \frac{s|\lambda|}{2}\right) \left( \frac{s}{2}\right)Nf(s,\hat{\lambda}) \ \mathrm{d}s\\ &&{}~~~~+\sum\limits_{j=0}^{n-3}\frac{j+1}{2} \ d_{j+1,k}^{n}|\lambda|^{n-j-3}\langle\delta^{(j)},Nf(\cdot,\hat{\lambda})\rangle, \end{array} $$

where in the second equality we have used Lemma A.4. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CAMPOS, S., SAAL, L. Some spherical analysis related to the pairs (U(n), H n ) and (U(p,q), H n ), p + q = n . Proc Math Sci 125, 371–397 (2015). https://doi.org/10.1007/s12044-015-0242-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12044-015-0242-7

Keywords

2010 Mathematics Subject Classification

Navigation