Skip to main content
Log in

Negative heat capacity in low-dimensional systems using non-local kernel approach

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Thermodynamical systems having negative heat capacity are characterised by peculiar behaviours, yet they have been reported in several systems ranging from large to nanoscales. We show that negative heat capacity may arise in low-dimensional/nano quantum oscillators due to strong electron correlations observed in underdoped cuprates and quantum wells with negative density of states which emerge in several quantum systems including mesoscopic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. J A Reyes-Nava, I Garzón and K Michaelian, Phys. Rev. B 67, 165401 (2003)

    Article  ADS  Google Scholar 

  2. M K H Kiessling and T Neukirch, Proc. Natl. Acad. Sci. 100, 1510 (2003)

    Article  ADS  Google Scholar 

  3. C B Das, S Das Gupta and A Z Mekjiani, Phys. Rev. C 68, 014607 (2003)

    Article  ADS  Google Scholar 

  4. P Serra, M A Carignano, F Alharbi and S Kais, Europhys. Lett. 104, 16004 (2013)

    Article  ADS  Google Scholar 

  5. W Thirring, Z. Phys. 235, 339 (1970)

    Article  ADS  Google Scholar 

  6. D H E Gross, Microcanonical thermodynamics: Phase Ttansitions in small systems, in: Lectures notes in physics (World Scientific, Singapore, 2001) Vol. 66

  7. D Lynden-Bell, Phys. A: Stat. Mech. Appl. 263, 293 (1999)

    Article  Google Scholar 

  8. L Velázquez and S Curilef, J. Stat. Mech. 2009, P03027 (2009)

    Article  Google Scholar 

  9. S Popescu, Nature Phys. 10, 264 (2014)

    Article  ADS  Google Scholar 

  10. Y Aharonov and D Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  11. J Romano, J N Reddy and J Jelovica, Comput. Struct. 156, 410 (2016)

    Article  Google Scholar 

  12. A Sellitto and M Di Domenico, Cont. Mech. Thermodyn. 31, 807 (2019)

    Article  Google Scholar 

  13. A Sellitto, V Zampoli and P M Jordan, Int. J. Eng. Sci. 154, 103328 (2020)

    Article  Google Scholar 

  14. F Vásquez, A Figueroa and I Rodriguez-Vargas, J. Appl. Phys. 121, 014311 (2017)

    Article  ADS  Google Scholar 

  15. J Z Simon, Phys. Rev. D 41, 3720 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. T F Kamalov, J. Phys. Conf. Ser. 442, 012051 (2013)

  17. H-D Doebner and G A Goldin, Phys. Lett. A 162, 397 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  18. H-D Doebner and G A Goldin, J. Phys. A: Math. Gen. 27, 1771 (1994)

    Article  ADS  Google Scholar 

  19. R A El-Nabulsi, Phys. C: Superconduct. Appl. 567, 1353545 (2019)

    Article  ADS  Google Scholar 

  20. R A El-Nabulsi, J. Phys. Chem. Sol. 122, 167 (2018)

    Article  ADS  Google Scholar 

  21. R A El-Nabulsi and W Anukool, Phys. B: Condens. Matter 644, 414229 (2022)

    Article  Google Scholar 

  22. R A El-Nabulsi and W Anukool, Proc. R. Soc. A 478, 20220200 (2022)

    Article  ADS  Google Scholar 

  23. R A El-Nabulsi and W Anukool, Acta Mech. 233, 4083 (2022)

    Article  MathSciNet  Google Scholar 

  24. R A El-Nabulsi and W Anukool, Eur. Phys. J. B 96, 52 (2023)

    Article  ADS  Google Scholar 

  25. R A El-Nabulsi and W Anukool, Chin. Phys. B 32, 090303 (2023)

    Article  ADS  Google Scholar 

  26. R A El-Nabulsi and W Anukool, J. Therm. Stresses 45, 303 (2022)

    Article  Google Scholar 

  27. R A El-Nabulsi, J. Comput. Theor. Transp. 49, 267 (2020)

    Article  MathSciNet  Google Scholar 

  28. K Mita, Am. J. Phys. 89, 500 (2021)

    Article  ADS  Google Scholar 

  29. T Okino, J. Mod. Phys. 4, 612 (2013)

    Article  Google Scholar 

  30. D J Koffa, J F Omonile and S X K Howusu, Arch. Phys. Res. 4, 41 (2013)

    Google Scholar 

  31. C H Bennett, Sci. Am. 257, 108 (1987)

    Article  ADS  Google Scholar 

  32. K Poulsen, M Majland, S Llyod, M Kjaergaard and N T Zinner, Phys. Rev. E 105, 044141 (2022)

    Article  ADS  Google Scholar 

  33. C M Bender, D C Brody and B J Meister, Proc. R. Soc. A 461, 733 (2005)

    Article  ADS  Google Scholar 

  34. O Shenker and M Hemmo, Entropy 22, 269 (2020)

    Article  ADS  Google Scholar 

  35. M Schmidt, R Kusche, Th Hippler, J Donges, W Kronmuller, B von Issendorff and H Haberland, Phys. Rev. Lett. 86, 1191 (2001)

    Article  ADS  Google Scholar 

  36. S Gagui, S Ghemid, H Meradji, B Zaidi, B Ul Haq, R Ahmed, B Hadjoudja, B Chouial and S A Tahir, Pramana – J. Phys. 97, 145 (2023)

    Article  ADS  Google Scholar 

  37. A Sayyari, M Servatkhah and R Pourmand, Pramana – J. Phys. 97, 75 (2023)

    Article  ADS  Google Scholar 

  38. S Nandi, Pramana – J. Phys. 97, 19 (2023)

    Article  ADS  Google Scholar 

  39. A Dahiya, K K Gupta and S S Singh, Pramana – J. Phys. 96, 229 (2022)

    Article  ADS  Google Scholar 

  40. A Melikyan and A Pinzul, J. Stat. Mech. 2010, P06007 (2010)

    Article  Google Scholar 

  41. R A El-Nabulsi and W Anukool, Phys. B: Condens. Matter 674, 415526 (2024)

    Article  Google Scholar 

  42. B P Huddle, J. Chem. Educ. 75, 1175 (1998)

    Article  Google Scholar 

  43. P Dasmeh, D J Searles, D Ajloo, D J Evans and S R Williams, J. Chem. Phys. 131, 214503 (2009)

    Article  ADS  Google Scholar 

  44. P Dasmeh, D Ajloo and D J Searles, J. Iran. Chem. Soc. 8, 424 (2011)

    Article  Google Scholar 

  45. M Torabi Rad and A Abbasi, Iran. J. Math. Chem. 8, 47 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anukool, W., El-Nabulsi, R.A. Negative heat capacity in low-dimensional systems using non-local kernel approach. Pramana - J Phys 98, 76 (2024). https://doi.org/10.1007/s12043-024-02766-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02766-7

Keywords

PACS Nos

Navigation