Skip to main content
Log in

Shape factor and temperature-dependent viscosity analysis for the unsteady flow of magnetic Al\(_2\)O\(_3\)–TiO\(_2/\)C\(_2\)H\(_6\)O\(_2\)–H\(_2\)O using Legendre wavelet technique

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The unsteady flow of fluids is crucial for real-world applications, efficiency and performance optimisation in various sectors, such as engineering, environmental impact research and developing technologies. Shape of nanoparticles in hybrid nanofluids is important for optimising energy applications and customising the performance of the nanofluid as it has effect on heat transport, material characteristics and stability. Considering the importance of unsteady flow and the shape factor of the nanoparticles, the present study aims to explore the solution of the unsteady flow problem of hybrid nanofluid over a stretching surface embedded within the porous medium. This study deals with the shape factor analysis by considering four shapes: brick, lamina, platelet and blade. The Legendre wavelet collocation technique is implemented to obtain the solution of the problem. It is revealed by creating a pie chart that the thermal conductivity is found to be maximum for lamina-shaped nanoparticles (i.e., 32%) while it is minimum for brick-shaped nanoparticles (i.e., 20%). The rate of heat transfer enhancement is also presented by the waterfall graph. The graph disclosed that on increasing the volume fraction of TiO\(_2\) from 1 to 10%, the rate of heat transfer is enhanced by 39.63%. The velocity profiles are inversely related to the temperature-dependent viscosity and velocity slip parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. K T Yang, J. Appl. Mech. 25, 421 (1958)

    Article  ADS  Google Scholar 

  2. E M A Elbashbeshy and M A A Bazid, Heat Mass Transf. 41, 1 (2004)

    Article  ADS  Google Scholar 

  3. A Ishak, R Nazar and I Pop, Meccanica 44, 369 (2009)

    Article  MathSciNet  Google Scholar 

  4. M Narayana and P Sibanda, Int. J. Heat Mass Transf. 55, 7552 (2012)

    Article  Google Scholar 

  5. S Khalili, S Dinarvand, R Hosseini, H Tamim and I Pop, Chin. Phys. B 23, 048203 (2014)

    Article  Google Scholar 

  6. O D Makinde, Z H Khan, R Ahmad and W A Khan, Phys. Fluids 30, 083601 (2018)

    Article  ADS  Google Scholar 

  7. M Gohar, F Ali, I Khan, N A Sheikh and A Shah, J. Aust. Ceram. Soc. 55, 657 (2019)

    Article  Google Scholar 

  8. I Waini, A Ishak and I Pop, Int. J. Heat Mass Transf. 136, 288 (2019)

    Article  Google Scholar 

  9. B S Goud, P Srilatha, T Srinivasulu, Y D Reddy and K S Kumar, Mater. Today: Proc.,https://doi.org/10.1016/j.matpr.2023.01.378 (2023)

    Article  Google Scholar 

  10. T Anusha, H N Huang and U S Mahabaleshwar, J. Taiwan Inst. Chem. Eng. 127, 79 (2021)

    Article  Google Scholar 

  11. Y D Reddy and B S Goud, Results Eng. 17, 100796 (2023)

    Article  Google Scholar 

  12. S M S Murshed, K C Leong and C Yang, Int. J. Therm. Sci. 44, 367 (2005)

    Article  Google Scholar 

  13. J Jeong, C Li, Y Kwon, J Lee, S H Kim and R Yun, Int. J. Refrig. 36, 2233 (2013)

    Article  Google Scholar 

  14. M M Elias, M Miqdad, I M Mahbubul, R Saidur, M Kamalisarvestani, M R Sohel, A Hepbasli, N A Rahim and M A Amalina, Int. Commun. Heat Mass Transf. 44, 93 (2013)

    Article  Google Scholar 

  15. S S Ghadikolaei, M Yassari, H Sadeghi, K Hosseinzadeh and D D Ganji, Powder Technol. 322, 428 (2017)

    Article  Google Scholar 

  16. Z Iqbal, E N Maraj, E Azhar and Z Mehmood, J. Taiwan Inst. Chem. Eng. 81, 150 (2017)

    Article  Google Scholar 

  17. G K Ramesh, Phys. Scr. 94, 105224 (2019)

    Article  ADS  Google Scholar 

  18. Asifa, T Anwar, P Kumam, Z Shah and K Sitthithakerngkiet, Molecules 26, 3711 (2021)

  19. Z Shah, H Babazadeh, P Kumam, A Shafee and P Thounthong, Front. Phys. 7, 164 (2019)

    Article  Google Scholar 

  20. K Hosseinzadeh, S Roghani, A Asadi, A Mogharrebi and D D Ganji, Int. J. Numer. Methods Heat Fluid Flow 31, 402 (2020)

    Article  Google Scholar 

  21. M Razzaghi and S Yousefi, Int. J. Syst. Sci. 32, 495 (2001)

    Article  Google Scholar 

  22. B Shankar Goud and G Dharmaiah, Numer. Heat Transf. B: Fundam. 84, 620 (2023)

    Article  ADS  Google Scholar 

  23. K G Kumar, E H B Hani, M E H Assad, M Rahimi-Gorji and S Nadeem, Microsyst. Technol. 27, 97 (2021)

    Article  Google Scholar 

  24. M Saqib, I Khan and S Shafie, Adv. Differ. Equ. 52, 1 (2019)

    Google Scholar 

  25. W Jamshed, G K Ramesh, G S Roopa, K S Nisar, R Safdar, J K Madhukesh, F Shahzad, S S P M Isa, B S Goud and M R Eid, Z. Angew. Math. Mech.https://doi.org/10.1002/zamm.202200002 (2022)

    Article  Google Scholar 

  26. B S Goud and M M Nandeppanavar, Int. J. Appl. Mech. Eng. 27, 226 (2022)

    Article  Google Scholar 

  27. A Saeed, A Alsubie, P Kumam, S Nasir, T Gul and W Kumam, Sci. Rep. 11, 1 (2021)

    Article  ADS  Google Scholar 

  28. S G Bejawada and M M Nandeppanavar, Exp. Comput. Multiph. Flow 5, 149 (2023)

    Article  Google Scholar 

  29. S Nandi, B Kumbhakar and S Sarkar, Int. Commun. Heat Mass Transf. 130, 105791 (2022)

    Article  Google Scholar 

  30. I Waini, A Ishak and I Pop, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  31. B Kumbhakar and S Nandi, Math. Comput. Simul. 194, 563 (2022)

    Article  Google Scholar 

  32. E M Abo-Eldahab, R Adel and Y M Saad, J. Appl. Math. Phys. 10, 3301 (2022)

    Article  Google Scholar 

  33. N Acharya, K Das and P K Kundu, J. Mol. Liq. 225, 418 (2017)

    Article  Google Scholar 

  34. P M Patil and M Kulkarni, Chin. J. Phys. 73, 406 (2021)

    Article  Google Scholar 

  35. N Abbas, S Nadeem, A Saleem, M Y Malik, A Issakhov and F M Alharbi, Chin. J. Phys. 69, 109 (2021)

    Article  Google Scholar 

  36. R D Russell and L F Shampine, Numer. Math. 19, 1 (1972)

    Article  MathSciNet  Google Scholar 

  37. A Walia, Math. Stat. Eng. Appl. 71, 2164 (2022)

    Google Scholar 

  38. W A Khan and I Pop, Int. J. Heat Mass Transf. 53, 2477 (2010)

    Article  Google Scholar 

  39. C Y Wang, J. Appl. Math. Mech. 69, 418 (1989)

    Google Scholar 

  40. R S Reddy Gorla and I Sidawi, Appl. Sci. Res. 52, 247 (1994)

    Article  Google Scholar 

  41. S U Devi and S A Devi, J. Niger. Math. Soc. 36, 419 (2017)

    Google Scholar 

  42. S S Ghadikolaei, M Gholinia, M E Hoseini and D D Ganji, J. Taiwan Inst. Chem. Eng. 97, 12 (2019)

    Article  Google Scholar 

  43. Z Shah, A Shafiq, M Rooman, M H Alshehri and E Bonyah, Case Stud. Therm. Eng. 49, 103376 (2023)

    Article  Google Scholar 

  44. S Das, R N Jana and O D Makinde, Defect Diffus. Forum 377, 42 (2017)

    Article  Google Scholar 

  45. N S Khashi’ie, N M Arifin, M Sheremet and I Pop, Case Stud. Therm. Eng. 26, 101199 (2021)

    Article  Google Scholar 

  46. S S Ghadikolaei, K Hosseinzadeh and D D Ganji, J. Mol. Liq. 262, 376 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Research was supported by UGC (NTA Ref No. 211610042170)/2021 (NET/CSIR)), Government of India and gratefully acknowledged by the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Pandey.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, T., Pandey, A.K. & Kumar, M. Shape factor and temperature-dependent viscosity analysis for the unsteady flow of magnetic Al\(_2\)O\(_3\)–TiO\(_2/\)C\(_2\)H\(_6\)O\(_2\)–H\(_2\)O using Legendre wavelet technique. Pramana - J Phys 98, 73 (2024). https://doi.org/10.1007/s12043-024-02756-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02756-9

Keywords

PACS Nos

Navigation