Skip to main content
Log in

Numerical Analysis of MHD Hybrid Nanofluid Flow a Porous Stretching Sheet with Thermal Radiation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The current investigation considers the two-dimensional time independent MHD flow and heat transfer of a water-based hybrid nanofluid induced by a stretching sheet of porous medium with first order boundary slip conditions. The Effects of thermal radiation, viscous dissipation, and Joule heating are taken into consideration. For investigation, hybrid nanoparticles of silver (\(Ag\)) and alumina (\(A{l}_{2}{O}_{3}\)) are considered along with water (\({H}_{2}O\)) as base fluid. Following a suitable similarity transformation, the governing equations are reconstructed as a set of non-linear ordinary differential equations. The equations are solved using the Keller-box numerical technique. The influence of different parameters on the velocity profile and temperature profile are illustrated graphically, whereas its impact on skin-friction coefficient and local Nusselt number are tabulated. From this study, it is concluded that the thermal boundary layer thickness increases with an increase in the radiation and magnetic parameter. Furthermore, it is observed that the speed of the hybrid nanofluid can be controlled by applying a magnetic field, porous media, and enhancing the volume fraction of the nanoparticles. It is found that better results are shown by the use of hybrid nanofluid (\(Ag-A{l}_{2}{O}_{3}/water\)) compared to the nanofluids with single nanoparticles (\(Ag/water)\). An excellent comparison with previously published works is presented in the current article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

\(c\) :

Constant

\(x,y\) :

Cartesian coordinates along the surface and normal to it, respectively (m)

\(u,v\) :

Velocity component along \(x\)-axis and \(y\)-axis respectively (m s1)

\(T\) :

Temperature (K)

\({B}_{o}\) :

Magnetic field (T)

\({k}_{o}\) :

Porous term (m2)

\({C}_{p}\) :

Specific heat at constant pressure (J kg1 K1)

\({q}_{r}\) :

Radiative heat flux

\({k}^{*}\) :

Mean absorption co-efficient

\(M\) :

Magnetic parameter

\(R{e}_{x}\) :

Reynold number

\({K}_{p}\) :

Permeability parameter

\(Ec\) :

Eckert number

\(Pr\) :

Prandtl number

\(R\) :

Radiation parameter

\(N\) :

Velocity slip factor

\(D\) :

Thermal slip factor

\(f\) :

Dimensionless stream function

\({q}_{w}\) :

Surface heat flux

\(C{f}_{x}\) :

Skin-friction coefficient

\(N{u}_{x}\) :

Nusselt number

\(\nu \) :

Kinematic viscosity (m2 s1)

\(\mu \) :

Dynamic viscosity (kg m1 s1)

\(\sigma \) :

Electrically conductivity (S m1)

\(\rho \) :

Density (kg m3)

\(\kappa \) :

Thermal conductivity of the nanofluid

\(\alpha \) :

Thermal diffusivity (m2 s1)

\({\phi }_{1}\) :

Volume fraction of \(Ag\) nanoparticle

\({\phi }_{2}\) :

Volume fraction of \(A{l}_{2}{O}_{3}\) nanoparticle

\({\sigma }^{*}\) :

Stefan-Boltzmann coefficient

\(\theta \) :

Dimensional temperature

\(\lambda \) :

Velocity slip parameter

\(\delta \) :

Thermal slip parameter

\({\prime}\) :

Derivative with respect to \(\upeta \)

\(w\) :

At wall

\(\infty \) :

At free stream region

\(hnf\) :

For hybrid nanofluid

\(nf\) :

For nanofluid with single nanoparticle

\(f\) :

For base fluid

\(s1\) :

For \(Ag\) nanoparticle

\(s2\) :

For \(A{l}_{2}{O}_{3}\) nanoparticle

References

  1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. Congr. Expos. 66, 99–105 (1995)

    Google Scholar 

  2. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  3. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52(25–26), 5796–5801 (2009)

    Article  Google Scholar 

  4. Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53(11), 2477–2483 (2010)

    Article  Google Scholar 

  5. Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50(7), 1326–1332 (2011)

    Article  Google Scholar 

  6. Sundar, L.S., Sharma, K.V., Singh, M.K., Sousa, A.C.M.: Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor-A review. Renew. Sustain. Energy Rev. 68, 185–198 (2017)

    Article  Google Scholar 

  7. Waini, I., Ishak, A., Pop, I.: Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int. J. Heat Mass Transf. 136, 288–297 (2019)

    Article  Google Scholar 

  8. Sreedevi, P., Sudarsana Reddy, P., Chamkha, A.: Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Appl. Sci. 2, 1222 (2020)

    Article  Google Scholar 

  9. Yashkun, U., Zaimi, K., Abu Bakar, N.A., Ishak, A., Pop, I.: MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect. Int. J. Numer. Meth. Heat Fluid Flow 31(3), 1014–1031 (2021)

    Article  Google Scholar 

  10. Rajesh, V., Sheremet, M.A., Öztop, H.F.: Impact of hybrid nanofluids on MHD flow and heat transfer near a vertical plate with ramped wall temperature. Case Stud. Thermal Eng. 28, 101557 (2021)

    Article  Google Scholar 

  11. Alkasasbeh, H.: Numerical solution of heat transfer flow of casson hybrid nanofluid over vertical stretching sheet with magnetic field effect. CFD Lett. 14(3), 39–52 (2022)

    Article  Google Scholar 

  12. Jawad, Md., Khan, Z., Bonyah, E., Jan, R.: Analysis of hybrid nanofluid stagnation point flow over a stretching surface with melting heat transfer. Math. Probl. Eng. 2022, 9469164 (2022)

    Article  Google Scholar 

  13. Yaseen, M., Rawat, S.K., Kumar, M.: Cattaneo-Christov heat flux model in Darcy-Forchheimer radiative flow of MoS2–SiO2/kerosene oil between two parallel rotating disks. J. Therm. Anal. Calorim. 147, 10865–10887 (2022)

    Article  Google Scholar 

  14. Rao, S., & Deka, P. N. (2023). A study on MHD flow of SWCNT-Al2O3/water hybrid nanofluid past a vertical permeable cone under the influence of thermal radiation and chemical reactions. Numer. Heat Transf. Part A Appl. 1–21

  15. Sajid, T., Gari, A.A., Jamshed, W., Eid, M.R., Islam, N., Irshad, K., Altamirano, G.C., El Din, S.M.: Case study of autocatalysis reactions on tetra hybrid binary nanofluid flow via Riga wedge: biofuel thermal application. Case Stud. Thermal Eng. 47, 103058 (2023)

    Article  Google Scholar 

  16. Kai, Y., Ali, K., Ahmad, S., Ahmad, S., Jamshed, W., Raizah, Z., El Din, S.M.: A case study of different magnetic strength fields and thermal energy effects in vortex generation of Ag-TiO2 hybrid nanofluid flow. Case Stud. Thermal Eng. 47, 103115 (2023)

    Article  Google Scholar 

  17. Rao, S., Deka, P.: Analysis of MHD bioconvection flow of a hybrid nanofluid containing motile microorganisms over a porous stretching sheet. BioNanoScience 13, 2134–2150 (2023)

    Article  Google Scholar 

  18. Cortell, R.: Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A 372(5), 631–636 (2008)

    Article  Google Scholar 

  19. England, W.G., Emery, A.F.: Thermal radiation effects on the laminar free convection boundary layer of an absorbing gas. ASME. J. Heat Transf. 91(1), 37–44 (1969)

    Article  Google Scholar 

  20. Khan, M.S., Alam, M.M., Tzirtzilakis, E.E., Ferdows, M., Karim, I.: Finite difference simulation of MHD radiative flow of a nanofluid past a stretching sheet with stability analysis. Int. J. Adv. Thermofluid Res. 2, 31–46 (2016)

    Google Scholar 

  21. Kumar, M.A., Reddy, Y.D., Rao, V.S., Goud, B.S.: Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate. Case Stud. Thermal Eng. 24, 100826 (2021)

    Article  Google Scholar 

  22. Ali, A., Kanwal, T., Awais, M., Shah, Z., Kumam, P., Thounthong, P.: Impact of thermal radiation and non-uniform heat flux on MHD hybrid nanofluid along a stretching cylinder. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  23. Lv, Y., Shaheen, N., Ramzan, M., Mursaleen, M., Nisar, K.S., Malik, M.Y.: Chemical reaction and thermal radiation impact on a nanofluid flow in a rotating channel with Hall current. Sci. Rep. 11(1), 1–17 (2021)

    Article  Google Scholar 

  24. Rao, S., Deka, P.: A numerical solution using EFDM for unsteady MHD radiative Casson nanofluid flow over a porous stretching sheet with stability analysis. Heat Transfer 51(8), 8020–8042 (2022)

    Article  Google Scholar 

  25. Jamshed, W., Uma Devi, S.S., Goodarzi, M., Prakash, M., Sooppy Nisar, K., Zakarya, M., Abdel-Aty, A.: Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: an optimal case study. Case Stud. Thermal Eng. 26, 101160 (2021)

    Article  Google Scholar 

  26. Rao, S., Deka, P.N.: A Numerical Investigation on Transport Phenomena in a Nanofluid Under the Transverse Magnetic Field Over a Stretching Plate Associated with Solar Radiation. In: Banerjee, S., Saha, A. (eds.) Nonlinear Dynamics and Applications, pp. 473–492. Springer Proceedings in Complexity, Springer, Cham (2022)

    Chapter  Google Scholar 

  27. Jamshed, W., Aziz, A.: A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyring nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape. Results Phys. 9, 195–205 (2018)

    Article  Google Scholar 

  28. Jamshed, W., Nisar, K.S., Ibrahim, R.W., Mukhtar, T., Vijayakumar, V., Ahmad, F.: Computational frame work of Cattaneo-Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: a thermal case study. Case Stud. Thermal Eng. 26, 101179 (2021)

    Article  Google Scholar 

  29. Das, B.R., Deka, P., Rao, S.: Numerical analysis on MHD mixed convection flow of Al_2O_3/H_2O (Aluminum-Water) nanofluids in a vertical square duct. East Eur. J. Phys. 2, 51–62 (2023)

    Article  Google Scholar 

  30. Rao, S., Deka, P.: A numerical study on heat transfer for MHD flow of radiative casson nanofluid over a porous stretching sheet. Latin Am. Appl. Res. Int. J. 53(2), 129–136 (2023)

    Article  Google Scholar 

  31. Zhang, X., Yang, D., Katbar, N.M., Jamshed, W., Ullah, I., Eid, M.R., Raizah, Z., Ibrahim, R.W., El-Wahed Khalifa, H.A., El Din, S.M.: Entropy and thermal case description of monophase magneto nanofluid with thermal jump and Ohmic heating employing finite element methodology. Case Stud. Thermal Eng. 45, 102919 (2023)

    Article  Google Scholar 

  32. Rao, S., Deka, P.N.: A numerical study on unsteady mhd williamson nanofluid flow past a permeable moving cylinder in the presence of thermal radiation and chemical reaction. Biointerface Res. Appl. Chem. 13(5), 436 (2023)

    Google Scholar 

  33. Wang, C.Y.: Free convection on a vertical stretching surface. J. Appl. Math. Mech. (ZAMM) 69, 418–420 (1989)

    Article  Google Scholar 

  34. Gorla, R.S.R., Sidawi, I.: Free convection on a vertical stretching surface with suction and blowing. Appl. Sci. Res. 52, 247–257 (1994)

    Article  Google Scholar 

  35. Devi, S.S.U., Devi, S.P.A.: Heat transfer enhancement of Cu-Al2O3 /water hybrid nanofluid flow over a stretching sheet. J. Nigerian Mathem. Soc. 36, 419–433 (2017)

    Google Scholar 

  36. Ramya, D., Raju, R.S., Rao, J.A., Chamkha, A.: Effects of velocity and thermal wall slip on magnetohydrodynamics (MHD) boundary layer viscous flow and heat transfer of a nanofluid over a non-linearly-stretching sheet: a numerical study. Propuls. Power Res. 7(2), 182–195 (2018)

    Article  Google Scholar 

  37. Khan, A.U., Nadeem, S., Hussain, S.T.: Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field. J. Mol. Liq. 224, 1210–1219 (2016)

    Article  Google Scholar 

  38. Brewster, M.Q.: Thermal radiative transfer properties. John Wiley and Sons, New York (1972)

    Google Scholar 

  39. Sparrow, E.M., Cess, R.D.: Radiation heat transfer. Hemisphere, Washington (1978)

    Google Scholar 

  40. Raptis, A.: Radiation and free convection flow through a porous medium. Int Commun. Heat Mass Transf. 25, 289–295 (1998)

    Article  Google Scholar 

  41. Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat Transfer. Springer, New York (1998)

    Google Scholar 

  42. Anwar, M.I., Shafie, S., Hayat, T., Shehzad, S.A., Salleh, M.Z.: Numerical study for MHD stagnation-point flow of a micropolar nanofluid towards a stretching sheet. J. Braz. Soc. Mech. Sci. Eng. 39, 89–100 (2017)

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or notfor- profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Rao wrote the main manuscript text with all tables. Deka prepared all the figures. All the aurthour reviewed the manuscript.

Corresponding author

Correspondence to Shiva Rao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S., Deka, P.N. Numerical Analysis of MHD Hybrid Nanofluid Flow a Porous Stretching Sheet with Thermal Radiation. Int. J. Appl. Comput. Math 10, 95 (2024). https://doi.org/10.1007/s40819-024-01734-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01734-4

Keywords

Navigation