Skip to main content
Log in

Physical properties and thermal stability of the GeTe2-x(SeSb)x (x = 0, 0.2, 0.4, 0.6) chalcogenide glasses

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Physical parameters are necessary to determine the suitability of the chalcogenide materials for specific applications. The present study reports the physical characteristics of the multicomponent GeTe2-x(SeSb)x (x = 0, 0.2, 0.4, 0.6) chalcogenide glasses synthesised by the melt-quench technique. The differential scanning calorimetric (DSC) technique has been used at separate heating rates β = 5, 10, 15, 20 °C\(/\)min. XRD and SEM–EDX studies have been carried out for structural and morphological analyses. The average coordination number and constraints of the compound have been calculated which indicates that the composition forms a glassy system. Lone pair electrons present in the composition have been evaluated. R parameter has a value greater than 1, indicating that the composition has sufficient chalcogen, chalcogen–chalcogen and heteropolar bonds. The overall bond energy of the compound has been calculated using the chemical bonding approach to understand the fine-structure properties of the compound. Cohesive energy has been observed to increase with composition. Thermal stability, glass transition temperature and glass forming ability of the compound have been calculated using different relations like Saad and Poulin relation, Dieztal relation, Hurby parameter (Hr) and reduced glass transition temperature (Trg) and studied theoretically to examine the thermal stability of the composition that shows that the prepared samples are suitable for data storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be available upon reasonable request.

References

  1. S Durai, S Raj and A Manivannan, IEEE TCAD 39, 1834 (2020)

    Google Scholar 

  2. J Shen et al, ACS Appl. Mater. Interfaces 11, 5336 (2019)

    Article  Google Scholar 

  3. L Wang, L Tu and J Wen, Sci. Technol. Adv. Mater. 18, 406 (2017)

    Article  Google Scholar 

  4. J Kang, R K Kotnala and S K Tripathi, AIP Conf. Proc. 2352, 020001 (2021)

    Google Scholar 

  5. X Sun, B Yu, G Ng and M Meyyappan, J. Phys. Chem. C 111, 2421 (2007)

    Article  Google Scholar 

  6. M Le Gallo and A Sebastian, J. Phys. D: Appl. Phys. 53, (2020)

  7. I Sharma and A S Hassanien, J. Non-Cryst. Solids 548, 120326 (2020)

    Article  Google Scholar 

  8. A S Hassanien, I Sharma and P Sharma, Phys. Scr. 98, 045911 (2023)

    Article  ADS  Google Scholar 

  9. J L Battaglia et al, Appl. Phys. Lett. 102, 175009 (2013)

    Article  Google Scholar 

  10. L Zhou et al, Adv. Electron. Mater. 6, 1 (2020)

    ADS  Google Scholar 

  11. M M El-Nahass and A A M Farag, Opt. Laser Technol. 44, 497 (2012)

    Article  ADS  Google Scholar 

  12. M Dongol, A F Elhady, M S Ebied and A A Abuelwafa, Indian J. Phys. 95, 1245 (2021)

    Article  ADS  Google Scholar 

  13. D K Dwivedi, H P Pathak, R K Shukla and A Kumar, Optik (Stuttg.) 126, 635 (2015)

    Article  ADS  Google Scholar 

  14. S Agarwal, P Lohia and D K Dwivedi, Physica B 646, 414329 (2022)

    Article  Google Scholar 

  15. S Agarwal, P Lohia and D K Dwivedi, J. Non-Cryst. Solids 597, 121874 (2022)

    Google Scholar 

  16. H Y Cheng et al, Tech. Dig. IEDM 978, 9894-7 (2015)

    Google Scholar 

  17. K Jarvis, R W Carpenter, M Davis and K A Campbell, J. Appl. Phys. 106, 083507 (2009)

    Article  ADS  Google Scholar 

  18. P K Singh and D K Dwivedi, Ferroelectrics 520, 256 (2017)

    Article  ADS  Google Scholar 

  19. A S Hassanien and I Sharma, Optik 200, 163415 (2020)

    Article  ADS  Google Scholar 

  20. A S Hassanien, I Sharma and A A Akl, J. Non-Cryst. Solids 531, 119853 (2020)

    Google Scholar 

  21. B Srinivasan et al, Materials 10, 328 (2017)

    Article  ADS  Google Scholar 

  22. S S Fouad, S A Fayeklb and M H Ali, Vacuum 49, 25 (1998)

    Article  ADS  Google Scholar 

  23. M P Thorpe and M v Chubynsky, Curr. Opin. Solid State Mater. Sci. 5, 525 (2001)

    Article  Google Scholar 

  24. D K Dwivedi, H P Pathak, N Shukla and A Kumar, J. Ovonic. Res. 10, 15 (2014)

    Google Scholar 

  25. V Kumar and B S R Sastry, J. Phys. Chem. Solids 66, 99 (2005)

    Article  ADS  Google Scholar 

  26. A S Hassanien, J. Non-Cryst. Solids 586, 121563 (2022)

    Article  Google Scholar 

  27. V Rao and D K Dwivedi, J. Mater. Sci.: Mater. Electron. 28, 6208 (2017)

    Google Scholar 

  28. A S Hassanien, K A Aly, H I Elsaeedy and A Alqahtani, Appl. Phys. A 128, 1021 (2022)

    Article  ADS  Google Scholar 

  29. A El-Denglawey, K A Aly, A Dahshan and A S Hassanien, ECS J. Solid State Sci. Technol. 11, 044006 (2022)

    Article  ADS  Google Scholar 

  30. D Adler, H K Henisch and S N Mott, Rev. Mod. Phys. 50, 209 (1978)

    Article  ADS  Google Scholar 

  31. M Saad and M Poulain, MSF 19–20, 11 (1987)

    Article  Google Scholar 

  32. N Mehta, R S Tiwari and A Kumar, Mater. Res. Bull. 41, 1664 (2006)

    Article  Google Scholar 

  33. A S Hassanien, I Sharma and P Sharma, Mater. Chem. Phys. 293, 126887 (2023)

    Article  Google Scholar 

  34. J M Goodwill, G Ramer, D Li, BD Hoskins, G Pavlidis, J J McClelland, A Centrone, J A Bain and M Skowronski, Nat. Commun. 10, 1628 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are appreciative of the financial support provided by CST-UP through major research project ID-559 with reference number CST-UP D\(/\)2286. The authors are grateful to the several scientists and researchers whose insightful publications and research we used to prepare the current manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D K Dwivedi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, D.P., Agarwal, S., Dwivedi, D.K. et al. Physical properties and thermal stability of the GeTe2-x(SeSb)x (x = 0, 0.2, 0.4, 0.6) chalcogenide glasses. Pramana - J Phys 98, 61 (2024). https://doi.org/10.1007/s12043-024-02748-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02748-9

Keywords

PACS Nos

Navigation