Skip to main content
Log in

Next-to-leading power corrections to event-shape variables

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the origin of next-to-leading power (NLP) corrections to the event shapes’ thrust and c-parameter, at next-to-leading order. For both event shapes, we trace the origin of such terms in the exact calculation, and compare with a recent approach involving the eikonal approximation and momentum shifts that follow from the Low–Burnett–Kroll–Del Duca (LBKD) theorem. We assess the differences both analytically and numerically. For the c-parameter both exact and approximate results are expressed in terms of elliptic integrals, but near the elastic limit it exhibits patterns similar to the thrust results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T  Kinoshita and A  Ukawa, Lect. Notes Phys. 39, 55 (1975), https://doi.org/10.1007/BFb0013300

    Article  ADS  Google Scholar 

  2. T  D Lee and M  Nauenberg, Phys. Rev. B 133, 1549 (1964), https://doi.org/10.1103/PhysRev.133.B1549

    Article  ADS  Google Scholar 

  3. G  Parisi, Phys. Lett. B 90, 295 (1980), https://doi.org/10.1016/0370-2693(80)90746-7

    Article  ADS  Google Scholar 

  4. G  Curci and M  Greco, Phys. Lett. B 92, 175 (1980), https://doi.org/10.1016/0370-2693(80)90331-7

    Article  ADS  Google Scholar 

  5. G  Sterman, Nucl. Phys. B 281, 310 (1987), https://doi.org/10.1016/0550-3213(87)90258-6

    Article  ADS  Google Scholar 

  6. S  Catani and L  Trentadue, Nucl. Phys. B 327, 323 (1989), https://doi.org/10.1016/0550-3213(89)90273-3

    Article  ADS  Google Scholar 

  7. S  Catani and L  Trentadue, Nucl. Phys. B 353, 183 (1991), https://doi.org/10.1016/0550-3213(91)90506-S

    Article  ADS  Google Scholar 

  8. J  G  M Gatheral, Phys. Lett. B 133, 90 (1983), https://doi.org/10.1016/0370-2693(83)90112-0

    Article  ADS  MathSciNet  Google Scholar 

  9. J  Frenkel and J  C Taylor, Nucl. Phys. B 246, 231 (1984), https://doi.org/10.1016/0550-3213(84)90294-3

    Article  ADS  Google Scholar 

  10. G  F Sterman, AIP Conf. Proc. 74, 22 (1981), https://doi.org/10.1063/1.33099

    Article  Google Scholar 

  11. G  P Korchemsky and G  Marchesini, Nucl. Phys. B 406, 225 (1993), https://doi.org/10.1016/0550-3213(93)90167-N

    Article  ADS  Google Scholar 

  12. G  P Korchemsky and G  Marchesini, Phys. Lett. B 313, 433 (1993), https://doi.org/10.1016/0370-2693(93)90015-A

    Article  ADS  Google Scholar 

  13. S  Forte and G  Ridolfi, Nucl. Phys. B 650, 229 (2003), https://doi.org/10.1016/S0550-3213(02)01034-9

    Article  ADS  Google Scholar 

  14. H  Contopanagos, E  Laenen and G  F Sterman, Nucl. Phys. B 484, 303 (1997), https://doi.org/10.1016/S0550-3213(96)00567-6

    Article  ADS  Google Scholar 

  15. T  Becher and M  Neubert, Phys. Rev. Lett. 97, 082001 (2006), https://doi.org/10.1103/PhysRevLett.97.082001

    Article  ADS  Google Scholar 

  16. M  D Schwartz, Phys. Rev. D 77, 014026 (2008), https://doi.org/10.1103/PhysRevD.77.014026

    Article  ADS  Google Scholar 

  17. C  W Bauer, S  Fleming, C  Lee and G  Sterman, Phys. Rev. D 78, 034027 (2008), https://doi.org/10.1103/PhysRevD.78.034027

    Article  ADS  Google Scholar 

  18. J-Y Chiu, A  Fuhrer, R  Kelley and A  V Manohar, Phys. Rev. D 80, 094013 (2009), https://doi.org/10.1103/PhysRevD.80.094013

    Article  ADS  Google Scholar 

  19. E  Gardi, Nucl. Phys. B 622, 365 (2002), https://doi.org/10.1016/S0550-3213(01)00594-6

    Article  ADS  Google Scholar 

  20. N  Agarwal, A  Mukhopadhyay, S  Pal and A  Tripathi, JHEP 03, 155 (2021), https://doi.org/10.1007/JHEP03(2021)155

    Article  ADS  Google Scholar 

  21. E  Laenen, Pramana – J. Phys. 63, 1225 (2004), https://doi.org/10.1007/BF02704892

    Article  ADS  Google Scholar 

  22. G  Luisoni and S  Marzani, J. Phys. G 42, 103101 (2015), https://doi.org/10.1088/0954-3899/42/10/103101

    Article  ADS  Google Scholar 

  23. T  Becher, A  Broggio and A  Ferroglia, Introduction to soft-collinear effective theory (Springer, 2015) Vol. 896

    Book  Google Scholar 

  24. J  Campbell, J  Huston and F  Krauss, The black book of quantum chromodynamics: A primer for the LHC era (Oxford University Press, 2017)

    Book  Google Scholar 

  25. N  Agarwal, L  Magnea, C  Signorile-Signorile and A  Tripathi, Phys. Rep. 994, 1 (2023), https://doi.org/10.1016/j.physrep.2022.10.001

    Article  ADS  MathSciNet  Google Scholar 

  26. C  W Bauer, S  Fleming and M  E Luke, Phys. Rev. D 63, 014006 (2000), https://doi.org/10.1103/PhysRevD.63.014006

    Article  ADS  Google Scholar 

  27. C  W Bauer and I  W Stewart, Phys. Lett. B 516, 134 (2001), https://doi.org/10.1016/S0370-2693(01)00902-9

    Article  ADS  Google Scholar 

  28. C  W Bauer, S  Fleming, D  Pirjol and I  W Stewart, Phys. Rev. D 63, 114020 (2001), https://doi.org/10.1103/PhysRevD.63.114020

    Article  ADS  Google Scholar 

  29. C  W Bauer, D  Pirjol and I  W Stewart, Phys. Rev. D 65, 054022 (2002), https://doi.org/10.1103/PhysRevD.65.054022

    Article  ADS  Google Scholar 

  30. D  Bonocore, E  Laenen, L  Magnea, S  Melville, L  Vernazza and C  D White, JHEP 2015, 8 (2015), https://doi.org/10.1007/JHEP06(2015)008

    Article  Google Scholar 

  31. D  Bonocore, E  Laenen, L  Magnea, L  Vernazza and C  D White, JHEP 2016, 121 (2016), https://doi.org/10.1007/JHEP12(2016)121

    Article  ADS  Google Scholar 

  32. I  Moult, I  W Stewart, G  Vita and H  X Zhu, JHEP 08, 013 (2018), https://doi.org/10.1007/JHEP08(2018)013

    Article  ADS  Google Scholar 

  33. M  Beneke, A  Broggio, S  Jaskiewicz and L  Vernazza, JHEP 07, 078 (2020), https://doi.org/10.1007/JHEP07(2020)078

    Article  ADS  Google Scholar 

  34. I  Moult, I  W Stewart and G  Vita, JHEP 11, 153 (2019), https://doi.org/10.1007/JHEP11(2019)153

    Article  ADS  Google Scholar 

  35. N  Bahjat-Abbas et al, JHEP 11, 002 (2019), https://doi.org/10.1007/JHEP11(2019)002

    Article  ADS  Google Scholar 

  36. M  Beneke, M  Garny, S  Jaskiewicz, R  Szafron, L  Vernazza and J  Wang, JHEP 01, 094 (2020), https://doi.org/10.1007/JHEP01(2020)094

    Article  ADS  Google Scholar 

  37. I  Moult, G  Vita and K  Yan, JHEP 07, 005 (2020), https://doi.org/10.1007/JHEP07(2020)005

    Article  ADS  Google Scholar 

  38. A  H Ajjath, P  Mukherjee, V  Ravindran, A  Sankar and S  Tiwari, JHEP 04, 131 (2021), https://doi.org/10.1007/JHEP04(2021)131

    Article  ADS  Google Scholar 

  39. M  Beneke, M  Garny, S  Jaskiewicz, R  Szafron, L  Vernazza and J  Wang, JHEP 10, 196 (2020), https://doi.org/10.1007/JHEP10(2020)196

    Article  ADS  Google Scholar 

  40. A  H Ajjath, P  Mukherjee and V  Ravindran, Phys. Rev. D 105, 094035 (2022), https://doi.org/10.1103/PhysRevD.105.094035

    Article  ADS  Google Scholar 

  41. M  van Beekveld, L  Vernazza and C  D White, JHEP 12, 087 (2021), https://doi.org/10.1007/JHEP12(2021)087

    Article  Google Scholar 

  42. Z  L Liu and M  Neubert, JHEP 04, 033 (2020), https://doi.org/10.1007/JHEP04(2020)033

    Article  ADS  Google Scholar 

  43. M  Krämer, E  Laenen and M  Spira, Nucl. Phys. B 511, 523 (1998), https://doi.org/10.1016/S0550-3213(97)00679-2

    Article  ADS  Google Scholar 

  44. R  D Ball, M  Bonvini, S  Forte, S  Marzani and G  Ridolfi, Nucl. Phys. B 874, 746 (2013), https://doi.org/10.1016/j.nuclphysb.2013.06.012

    Article  ADS  Google Scholar 

  45. C  Anastasiou, C  Duhr, F  Dulat, F  Herzog and B  Mistlberger, Phys. Rev. Lett. 114, 212001 (2015), https://doi.org/10.1103/PhysRevLett.114.212001

    Article  ADS  Google Scholar 

  46. M  van Beekveld, W  Beenakker, E  Laenen and C  D White, JHEP 03, 106 (2020), https://doi.org/10.1007/JHEP03(2020)106

    Article  ADS  Google Scholar 

  47. M  van Beekveld, E  Laenen, J S Damsté and L  Vernazza, JHEP 05, 114 (2021), https://doi.org/10.1007/JHEP05(2021)114

    Article  ADS  Google Scholar 

  48. A  H Ajjath, P  Mukherjee, V  Ravindran, A  Sankar and S  Tiwari, Eur. Phys. J. C 82, 234 (2022), https://doi.org/10.1140/epjc/s10052-022-10174-7

    Article  ADS  Google Scholar 

  49. E  Laenen, G  Stavenga and C  D White, JHEP 2009, 054 (2009), https://doi.org/10.1088/1126-6708/2009/03/054

    Article  Google Scholar 

  50. E  Laenen, L  Magnea, G  Stavenga and C  D White, JHEP 2011, 141 (2011), https://doi.org/10.1007/JHEP01(2011)141

    Article  Google Scholar 

  51. G  Soar, A  Vogt, S  Moch and J  A  M Vermaseren, Nucl. Phys. 832, 152 (2010)

    Article  ADS  Google Scholar 

  52. D  de Florian, J  Mazzitelli, S  Moch and A  Vogt, JHEP 2014, 1 (2014)

    Google Scholar 

  53. N  A  L Presti, A  A Almasy and A  Vogt, Phys. Lett. B 737, 120 (2014)

    Article  ADS  Google Scholar 

  54. D  Bonocore, Asymptotic dynamics on the worldline for spinning particles, arXiv:2009.07863 [hep-th]

  55. H  Gervais, Phys. Rev. D 95, 125009 (2017), https://doi.org/10.1103/PhysRevD.95.125009

    Article  ADS  MathSciNet  Google Scholar 

  56. H  Gervais, Phys. Rev. D 96, 065007 (2017), https://doi.org/10.1103/PhysRevD.96.065007

    Article  ADS  MathSciNet  Google Scholar 

  57. H  P Gervais, Soft radiation theorems at all loop order in quantum field theory (Doctoral dissertion, State University of New York at Story Brook, 2017)

  58. E  Laenen, J  Sinninghe Damsté, L  Vernazza, W  Waalewijn and L  Zoppi, Phys. Rev. D 103, 034022 (2021), https://doi.org/10.1103/PhysRevD.103.034022

    Article  ADS  Google Scholar 

  59. M  Beneke et al, JHEP 07, 144 (2022), https://doi.org/10.1007/JHEP07(2022)144

    Article  ADS  Google Scholar 

  60. D  W Kolodrubetz, I  Moult and I  W Stewart, JHEP 05, 139 (2016), https://doi.org/10.1007/JHEP05(2016)139

    Article  ADS  Google Scholar 

  61. I  Moult, L  Rothen, I  W Stewart, F  J Tackmann and H  X Zhu, Phys. Rev. D 95, 074023 (2017), https://doi.org/10.1103/PhysRevD.95.074023

    Article  ADS  Google Scholar 

  62. I  Feige, D  W Kolodrubetz, I  Moult and I  W Stewart, JHEP 11, 142 (2017), https://doi.org/10.1007/JHEP11(2017)142

    Article  ADS  Google Scholar 

  63. M  Beneke, M  Garny, R  Szafron and J  Wang, JHEP 03, 001 (2018), https://doi.org/10.1007/JHEP03(2018)001

    Article  ADS  Google Scholar 

  64. M  Beneke, M  Garny, R  Szafron and J  Wang, JHEP 11, 112 (2018), https://doi.org/10.1007/JHEP11(2018)112

    Article  ADS  Google Scholar 

  65. A  Bhattacharya, I  Moult, I  W Stewart and G Vita, JHEP 05, 192 (2019), https://doi.org/10.1007/JHEP05(2019)192

    Article  ADS  Google Scholar 

  66. M  Beneke, M  Garny, R  Szafron and J  Wang, JHEP 09, 101 (2019), https://doi.org/10.1007/JHEP09(2019)101

    Article  ADS  Google Scholar 

  67. G  T Bodwin, J-H Ee, J  Lee and X-P Wang, Phys. Rev. D 104, 116025 (2021), https://doi.org/10.1103/PhysRevD.104.116025

    Article  ADS  Google Scholar 

  68. Z  L Liu, B  Mecaj, M  Neubert and X  Wang, Phys. Rev. D 104, 014004 (2021), https://doi.org/10.1103/PhysRevD.104.014004

    Article  ADS  Google Scholar 

  69. R  Boughezal, X  Liu and F  Petriello, JHEP 03, 160 (2017), https://doi.org/10.1007/JHEP03(2017)160

    Article  ADS  Google Scholar 

  70. I  Moult, I  W Stewart and G  Vita, JHEP 07, 067 (2017), https://doi.org/10.1007/JHEP07(2017)067

    Article  ADS  Google Scholar 

  71. C H Chang, I  W Stewart and G  Vita, JHEP 04, 041 (2018), https://doi.org/10.1007/JHEP04(2018)041

    Article  ADS  Google Scholar 

  72. M  Beneke et al, JHEP 03, 043 (2019), https://doi.org/10.1007/JHEP03(2019)043

    Article  ADS  MathSciNet  Google Scholar 

  73. M  A Ebert, I  Moult, I  W Stewart, F  J Tackmann, G  Vita and H  X Zhu, JHEP 04, 123 (2019), https://doi.org/10.1007/JHEP04(2019)123

    Article  ADS  Google Scholar 

  74. I  Moult, I  W Stewart, G  Vita and H  X Zhu, JHEP 05, 089 (2020), https://doi.org/10.1007/JHEP05(2020)089

    Article  ADS  Google Scholar 

  75. Z  L Liu and M  Neubert, JHEP 06, 060 (2020), https://doi.org/10.1007/JHEP06(2020)060

    Article  ADS  Google Scholar 

  76. Z  L Liu, B  Mecaj, M  Neubert, X  Wang and S  Fleming, JHEP 07, 104 (2020), https://doi.org/10.1007/JHEP07(2020)104

    Article  ADS  Google Scholar 

  77. J  Wang, Resummation of double logarithms in loop-induced processes with effective field theory, arxiv:1912.09920

  78. A  Banfi, G  Salam and G  Zanderighi, JHEP 0201, 018 (2002)

    Article  ADS  Google Scholar 

  79. S  Catani, G  Turnock and B  Webber, Phys. Lett. B 295, 269 (1992), https://doi.org/10.1016/0370-2693(92)91565-Q

    Article  ADS  Google Scholar 

  80. S  Catani, L  Trentadue, G  Turnock and B  Webber, Nucl. Phys. B 407, 3 (1993), https://doi.org/10.1016/0550-3213(93)90271-P

    Article  ADS  Google Scholar 

  81. R  Ellis, W  Stirling and B  Webber, QCD and collider physics  (Cambridge University Press, 2011) Vol. 8

    Google Scholar 

  82. Y  L Dokshitzer, A  Lucenti, G  Marchesini and G  P Salam, JHEP 1998, 011 (1998), https://doi.org/10.1088/1126-6708/1998/01/011

    Article  ADS  Google Scholar 

  83. M  Dasgupta and G  P Salam, JHEP 2002, 017 (2002), https://doi.org/10.1088/1126-6708/2002/03/017

    Article  Google Scholar 

  84. V  Antonelli, M  Dasgupta and G  P Salam, JHEP 2000, 001 (2000), https://doi.org/10.1088/1126-6708/2000/02/001

    Article  Google Scholar 

  85. A  G-D Ridder, T  Gehrmann, E  Glover and G  Heinrich, JHEP 2007, 094 (2007), https://doi.org/10.1088/1126-6708/2007/12/094

    Article  Google Scholar 

  86. T  Becher and M  D Schwartz, JHEP 2008, 034 (2008), https://doi.org/10.1088/1126-6708/2008/07/034

    Article  Google Scholar 

  87. S  Weinzierl, Phys. Rev. Lett.. 101, 162001 (2008), https://doi.org/10.1103/PhysRevLett.101.162001

    Article  ADS  Google Scholar 

  88. A  Gehrmann-De Ridder, T  Gehrmann, E  W  N Glover and G  Heinrich, Phys. Rev. Lett. 99, 132002 (2007), https://doi.org/10.1103/PhysRevLett.99.132002

  89. T  Becher and M  D Schwartz, JHEP 0807, 034 (2008), https://doi.org/10.1088/1126-6708/2008/07/034

    Article  ADS  Google Scholar 

  90. M  Dasgupta and G  P Salam, J. Phys. G 30, R143 (2004), https://doi.org/10.1088/0954-3899/30/5/R01

    Article  ADS  Google Scholar 

  91. S  Catani, G  Turnock, B  R Webber and L  Trentadue, Phys. Lett. B 263, 491 (1991), https://doi.org/10.1016/0370-2693(91)90494-B

    Article  ADS  Google Scholar 

  92. F  Caola, S F Ravasio, G  Limatola, K  Melnikov and P  Nason, JHEP 01, 093 (2022), https://doi.org/10.1007/JHEP01(2022)093

    Article  ADS  Google Scholar 

  93. F  Caola, S  F Ravasio, G  Limatola, K  Melnikov, P  Nason and M  A Ozcelik, JHEP 12, 062 (2022), https://doi.org/10.1007/JHEP12(2022)062

    Article  ADS  Google Scholar 

  94. P  Nason and G  Zanderighi, JHEP 06, 058 (2023), https://doi.org/10.1007/JHEP06(2023)058

    Article  ADS  Google Scholar 

  95. V  Del Duca, E  Laenen, L  Magnea, L  Vernazza and C  White, JHEP 11, 057 (2017), https://doi.org/10.1007/JHEP11(2017)057

    Article  ADS  Google Scholar 

  96. M  van Beekveld, W  Beenakker, R  Basu, E  Laenen, A  Misra and P  Motylinski, Phys. Rev. D 100, 056009 (2019), https://doi.org/10.1103/PhysRevD.100.056009

    Article  ADS  Google Scholar 

  97. M  van Beekveld, W  Beenakker, E  Laenen, A  Misra and C  D White, PoS RADCOR2019, 053 (2019), https://doi.org/10.22323/1.375.0053

    Article  Google Scholar 

  98. E  Laenen, J  Sinninghe Damsté, L  Vernazza, W  Waalewijn and L  Zoppi, Phys. Rev. D 103, 034022 (2021), https://doi.org/10.1103/PhysRevD.103.034022

    Article  ADS  Google Scholar 

  99. F  E Low, Phys. Rev. 110, 974 (1958), https://doi.org/10.1103/PhysRev.110.974

    Article  ADS  Google Scholar 

  100. T  H Burnett and N  M Kroll, Phys. Rev. Lett. 20, 86 (1968), https://doi.org/10.1103/PhysRevLett.20.86

    Article  ADS  Google Scholar 

  101. V  Del Duca, Nucl. Phys. B 345, 369 (1990), https://doi.org/10.1016/0550-3213(90)90392-Q

    Article  ADS  Google Scholar 

  102. E  Farhi, Phys. Rev. Lett. 39, 1587 (1977), https://doi.org/10.1103/PhysRevLett.39.1587

    Article  ADS  Google Scholar 

  103. ALEPH Collaboration: A  Heister et al, Eur. Phys. J. C 35, 457 (2004), https://doi.org/10.1140/epjc/s2004-01891-4

  104. ALEPH Collaboration, The ALEPH QCD web site, https://aleph.web.cern.ch/aleph/aleph/newpub/physics.html

  105. J  F Donoghue, F  E Low and S-Y Pi, Phys. Rev. D 20, 2759 (1979), https://doi.org/10.1103/PhysRevD.20.2759

    Article  ADS  Google Scholar 

  106. G  C Fox and S  Wolfram, Phys. Rev. Lett. 41, 1581 (1978), https://doi.org/10.1103/PhysRevLett.41.1581

  107. G  Parisi, Phys. Lett. B 50, 367 (1974), https://doi.org/10.1016/0370-2693(74)90692-3

    Article  ADS  Google Scholar 

  108. R  K Ellis, D  A Ross and A  E Terrano, Nucl. Phys. B 178, 421 (1981), https://doi.org/10.1016/0550-3213(81)90165-6

  109. S  Catani and B  R Webber, JHEP 10, 005 (1997), https://doi.org/10.1088/1126-6708/1997/10/005

    Article  ADS  Google Scholar 

  110. E  Gardi and L  Magnea, JHEP 0308, 030 (2003)

    Article  ADS  Google Scholar 

  111. A Erdelyi, Higher transcendental functions (McGraw Hill Company, 1953), Vol. II

  112. M Abramowitz and I E Stegun, Handbook of mathematical functions (National Bureau of standards AMS, 1972), Vol. X

  113. L  Buonocore, M  Grazzini, F  Guadagni and L  Rottoli, Subleading power corrections for event shape variables in\(e^+ e^-\)annihilation. arxiv:2311.12768

  114. S  Catani and B  Webber, Phys. Lett. B 427, 377 (1998), https://doi.org/10.1016/S0370-2693(98)00359-1, https://arxiv.org/abs/hep-ph/9801350

  115. A  H Hoang, D  W Kolodrubetz, V  Mateu and I  W Stewart, Phys. Rev. D 91, 094017 (2015), https://doi.org/10.1103/PhysRevD91.094017

    Article  ADS  Google Scholar 

  116. Y  L Dokshitzer and B  R Webber, Phys. Lett. B 352, 451 (1995), https://doi.org/10.1016/0370-2693(95)00548-Y. https://arxiv.org/abs/hep-ph/9504219

    Article  ADS  Google Scholar 

  117. R  Akhoury and V  I Zakharov, Phys. Lett. B 357, 646 (1995), https://doi.org/10.1016/0370-2693(95)00866-J. https://arxiv.org/abs/hep-ph/9504248

  118. G  P Korchemsky and G  F Sterman, Nucl. Phys. B 437, 415 (1995), https://doi.org/10.1016/0550-3213(94)00006-Z. https://arxiv.org/abs/hep-ph/9411211

  119. C  Lee and G  Sterman, Phys. Rev. D 75, 014022 (2007), https://doi.org/10.1103/PhysRevD.75.014022

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MvB acknowledges support from a Royal Society Research Professorship (RP\(\backslash \)R1\(\backslash \)180112), the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 788223, PanScales), and by the Science and Technology Facilities Council under ST/T000864/1. EL and AT would like to thank the MHRD, Government of India, for the SPARC grant SPARC/2018–2019/P578/SL, Perturbative QCD for Precision Physics at the LHC. SM would like to thank CSIR, Govt. of India, for the SRF fellowship (09/1001(0052)/2019-EMR-I). The authors would like to thank Buonocore et al [113] for spotting a mistake in the expansion of \( \Pi [n_1(c), m_1(c)] \) in eq. (86).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Mishra.

Appendices

Appendix A. Transformation of incomplete elliptic integrals

In this Appendix, we demonstrate how we handle the incomplete elliptic integrals that appear in the expression of c-parameter distribution. The final expression for the c-parameter distribution is written in a compact manner in eq. (83), where K, E and \( \Pi \) are the complete elliptic integrals of the first, second and third kinds, respectively given in eq. (84). However, when we perform integration over final variable y in eqs (78), (97) and (108), this integration produces incomplete elliptic integrals F, E and \( \Pi \). These incomplete elliptic integrals are later converted into complete integrals to arrive at eq. (83), as first written in [110]. The three kinds of incomplete elliptic integrals appearing in c-parameter distribution are

$$\begin{aligned}&F[\phi , m]= \int _{0}^{\phi } \textrm{d} \theta \frac{1}{\sqrt{1-m \sin ^2\theta }}\, \nonumber \\&\qquad \qquad \,\,= \int _{0}^{\sin \phi } \frac{\textrm{d}t}{\sqrt{(1-t^2)(1-mt^2)}} \,, \end{aligned}$$
(A.1)
$$\begin{aligned}&E[\phi , m]= \int _{0}^{\phi } \textrm{d} \theta \sqrt{1-m \sin ^2\theta }\, \nonumber \\&\qquad \qquad \,\,=\int _{0}^{\sin \phi } \textrm{d}t \sqrt{\frac{1-mt^2}{1-t^2}} \,, \end{aligned}$$
(A.2)
$$\begin{aligned}&\Pi [n,\phi , m]= \int _{0}^{\phi } \textrm{d} \theta \frac{1}{(1-m\sin ^2\theta )\sqrt{1-m\sin ^2\theta }} \, \nonumber \\&\qquad \qquad \qquad \!=\int _{0}^{\sin \phi } \frac{\textrm{d}t}{(1-nt^2)\sqrt{(1-t^2)(1-mt^2)}} \,. \end{aligned}$$
(A.3)

Here, \( \phi , m \) and n are called the amplitude, parameter and characteristic of the elliptic integrals, respectively. Equation (84) gives their respective complete forms. The corresponding transformation into a complete elliptic integral can be performed using the rules

$$\begin{aligned}&F[\phi ,m]=K[m]\,, \nonumber \\&E[\phi ,m]=E[m]\,, \\&\Pi [n,\phi , m]=\Pi [n, m]\,.\nonumber \end{aligned}$$
(A.4)

The above transformation is only possible when the amplitude \(\phi =\pi /2\). The indefinite integration of eqs (78), (97) and (108) results in multiple incomplete elliptic integrals with only two unique amplitudes in their arguments, namely \( \phi _1(c,y) \) and \(\phi _2(c,y)\), given by

$$\begin{aligned} \phi _1(c,y)&=\left( \frac{-1+\sqrt{1-8c}-4c+8c/y}{2\sqrt{1-8c}}\right) ^{1/2}\,, \end{aligned}$$
(A.5)
$$\begin{aligned} \phi _2(c,y)&=\left( \frac{1+\sqrt{1-8c}+4c-8c/y}{2\sqrt{1-8c}}\right) ^{1/2}\,. \end{aligned}$$
(A.6)

The amplitudes \( \phi _1(c,y) \) and \(\phi _2(c,y) \) are present in the arguments of all three kinds of incomplete elliptic integrals. If we directly substitute the upper limit (\(y_2\)) after integration, then none of the incomplete elliptic integrals with the amplitude \( \phi _1(c,y) \) can be reduced to a complete elliptic integral since

$$\begin{aligned} \phi _1(c,y) \vert _{y =y_2}=0\,. \end{aligned}$$
(A.7)

The transformation to complete elliptic integrals holds only when \( \phi _1 =\pi /2 \) as given in eq. (A.4). However, the incomplete elliptic integrals with the amplitude \( \phi _2(c,y), \) upon substitution of the upper limit, can be directly reduced to a complete elliptic integral as

$$\begin{aligned} \phi _2(c,y) \vert _{y \,=\,y_2}=\frac{\pi }{2}\,. \end{aligned}$$
(A.8)

We observe a similar but opposite behaviour when we substitute the lower limit (\( y_1 \)) into the integration result. This time, the incomplete elliptic integrals with the amplitude \(\phi _1(c,y)\) can be reduced to the complete elliptic integral as

$$\begin{aligned} \phi _1(c,y) \vert _{y \,=\,y_1}=\frac{\pi }{2}\,, \end{aligned}$$
(A.9)

while the elliptic integrals with amplitude \( \phi _2(c,y) \) cannot be reduced to the complete elliptic integral as

$$\begin{aligned} \phi _2(c,y) \vert _{y \,=\,y_1}=0\,. \end{aligned}$$
(A.10)

In order to resolve the issue of transforming the incomplete elliptic integrals to complete elliptic integrals, we modify the upper and lower limits of y integration as

$$\begin{aligned} (y_1, y_2) \rightarrow (y_1+e, y_2+e)\, , \end{aligned}$$
(A.11)

where e is an infinitesimal real off-set parameter that will be taken to zero at the end. The relative sign of e does not affect the final expression for the c-parameter distribution, which is independent of this off-set parameter. When we substitute the upper limit of integration \(y_2 \) with the off-set parameter as defined in the above expression, the amplitudes \( \phi _1(c,y) \) and \(\phi _2(c,y) \) modify and have the following form:

$$\begin{aligned}&\phi _1(c,y,e) \vert _{y \,=\,y_2+e}\nonumber \\&\, = \left( \frac{\left( -4 c+\sqrt{1-8 c}-1\right) (c+1) e}{\sqrt{1-8 c} \left( 2 c (e+2)+\sqrt{1-8 c}+2 e+1\right) }\right) ^{1/2} \,, \end{aligned}$$
(A.12)
$$\begin{aligned}&\phi _2(c,y,e) \vert _{y \,=\,y_2+e}\nonumber \\&\, =\left( \frac{-\frac{16 (c\!+\!1) c}{2 c (e\!+\!2)\!+\!\sqrt{1-8 c}\!+\!2 e\!+\!1}+4 c+\sqrt{1-8 c}+1}{2 \sqrt{1-8 c}}\right) ^{1/2}\,. \end{aligned}$$
(A.13)

Similarly, from the lower limit, the amplitudes take the form

$$\begin{aligned}&\phi _1(c,y,e) \vert _{y \,=\,y_1+e}\nonumber \\&\quad = \left( \frac{\frac{16 (c+1) c}{2 c (e+2)-\sqrt{1-8 c}+2 e+1}\!-\!4 c\!+\!\sqrt{1-8 c}\!-\!1}{2 \sqrt{1-8 c}}\right) ^{1/2} \,, \end{aligned}$$
(A.14)
$$\begin{aligned}&\phi _2(c,y,e) \vert _{y \,=\,y_1+e}\nonumber \\&\quad =\left( -\frac{(c+1) \left( 4 c+\sqrt{1-8 c}+1\right) e}{\sqrt{1\!-\!8 c} \left( -\!2 c (e\!+\!2)\!+\!\sqrt{1\!-\!8 c}\!-\!2 e\!-\!1\right) }\right) ^{1/2}\,. \end{aligned}$$
(A.15)

Note that, it is necessary to use this parameter because the straightforward substitution of limits did not allow the transformation of every incomplete elliptic integral. Let us consider a few examples to demonstrate how this off-set parameter solves the problem with incomplete elliptic integrals that cannot be reduced into complete elliptic integrals as their amplitude \( \phi \ne \pi /2 \). We categorise all the elliptic integrals appearing after y integration into two classes according to their amplitudes \(\phi \) as (i) non-reducible incomplete elliptic integrals \( (\phi \ne \pi /2) \) and (ii) reducible incomplete elliptic integrals \( (\phi = \pi /2) \).

1.1 Appendix A.1 Non-reducible incomplete elliptic integrals

Here we consider an incomplete elliptic integral that appears from the upper limit contributions, and the expression of the elliptic integral is

$$\begin{aligned}&E[\phi _1(c,e),m_1(c)]\nonumber \\&=\!E\!\left[ \!\sin ^{-1}\!\left( \frac{\left( -\!4 c\!+\!\sqrt{1\!-\!8 c}\!-\!1\right) \! (c\!+\!1) e}{\sqrt{1\!-\!8 c} \!\left( 2 c (e\!+\!2)\!+\!\sqrt{1\!-\!8 c}\!+\!2 e\!+\!1\right) }\!\right) ^{1/2},\right. \nonumber \\&\quad \left. \frac{2\sqrt{1-8c}}{1+\sqrt{1-8c}-4c-8c^2} \right] \, , \end{aligned}$$
(A.16)

where \( m_1 \) is given in eq. (85). The amplitude of this elliptic function is

$$\begin{aligned}&\phi _1(c,e) \nonumber \\&\quad = \sin ^{-1}\left( \frac{\left( -4 c\!+\!\sqrt{1\!-\!8 c}\!-\!1\right) (c\!+\!1) e}{\sqrt{1\!-\!8 c} \left( 2 c (e\!+\!2)\!+\!\sqrt{1\!-\!8 c}\!+\!2 e\!+\!1\right) }\right) ^{1/2}\,. \end{aligned}$$
(A.17)

The elliptic integral in eq. (A.16) cannot be reduced to a complete elliptic integral as in the limit \(e \rightarrow 0\) the amplitude \( \phi _1(c,e) \rightarrow 0\). However, we can expand this elliptic integral in powers of e around \(e = 0\), and upon expanding we get

$$\begin{aligned} E[\phi _1(c,e),m_1(c)]&=\sqrt{\frac{\left( -4 c+\sqrt{1-8 c}-1\right) (c+1)}{\sqrt{1-8 c} \left( 4 c+\sqrt{1-8 c}+1\right) }}\nonumber \\&\quad \times \sqrt{e} +\mathcal {O}(e^{3/2})\,. \end{aligned}$$
(A.18)

The expansion’s first term, proportional to \(e^{1/2}\), is the only significant term in the limit when \(e\rightarrow 0\).

The next term in the above expression is proportional to \(e^{3/2}\), and can be dropped. The small-e expression for these specific incomplete elliptic integrals occurring is then stored in the form

$$\begin{aligned}&E[\phi _1(c,e),m_1(c)] \nonumber \\&\quad =\,\sqrt{\frac{\left( -4 c+\sqrt{1-8 c}-1\right) (c+1)}{\sqrt{1-8 c} \left( 4 c+\sqrt{1-8 c}+1\right) }} \sqrt{e}\,. \end{aligned}$$
(A.19)

Now, we shift our attention toward the elliptic integrals that appears from the lower limit contribution, one such incomplete elliptic integral is

$$\begin{aligned}&F[\phi _2(c,e),m_1(c)] \nonumber \\&\quad \!\!\!=\!F\!\left[ \!\sin ^{-1}\!\!\left( \!\frac{(c+1) \left( 4 c+\sqrt{1-8 c}+1\right) e}{\sqrt{1\!-\!8 c} \left( 2 c (e\!-\!2)\!+\!\sqrt{1\!-\!8 c}\!+\!2 e\!-\!1\!\right) }\!\right) ^{\!1/2}\!\!, \right. \nonumber \\&\left. \qquad \frac{2\sqrt{1-8c}}{1+\sqrt{1-8c}-4c-8c^2} \right] \,. \end{aligned}$$
(A.20)

The above elliptic integral cannot be reduced into a complete elliptic integral as the amplitude \( \phi _2(c,e) \) is

$$\begin{aligned}&\phi _2(c,e) \nonumber \\&\quad =\, \sin ^{-1}\!\left( \frac{(c\!+\!1) \left( 4 c\!+\!\sqrt{1\!-\!8 c}\!+\!1\!\right) e}{\sqrt{1\!-\!8 c} \!\left( 2 c (e\!-\!2)\!+\!\sqrt{1\!-\!8 c}\!+\!2 e\!-\!1\right) }\right) ^{1/2}\,. \end{aligned}$$
(A.21)

and in the limit \( e \rightarrow 0 \) the amplitude \( \phi _2(c,e) \rightarrow 0 \). Following the similar procedure as in eq. (A.19), the elliptic integral in eq. (A.20) is expanded around \( e = 0 \), to get

$$\begin{aligned}&F[\phi _2(c,e),m_1(c)]\nonumber \\&\quad =\!\sqrt{\frac{(c+1) \left( 4 c+\sqrt{1-8 c}+1\right) }{\sqrt{1\!-\!8 c} \!\left( -\!4 c\!+\!\sqrt{1\!-\!8 c}\!-\!1\right) }} \sqrt{e}\, . \end{aligned}$$
(A.22)
Fig. 8
figure 8

In (a) and (b), the thrust and c-parameter distributions, respectively are plotted. We show the exact result (solid red curves) given in eqs (28) and (83), the shifted approximation result (dashed blue curves) up to NLP terms given in eqs (47) and (101) for \( \tau \) and c respectively. We also plot the eikonal distributions (dotted purple curves) given in eqs (A.27) and (A.28).

The coefficients of these elliptic functions depend on e when the integration limits are modified in accordance with eq. (A.11). When we expand our final result in powers of e, the negative powers of \( \sqrt{e} \) from the coefficients combine with the positive powers of \( \sqrt{e} \) from the stored expressions of non-reducible incomplete elliptic integrals to yield a few terms independent of e. Subsequently, e can be set to zero.

1.2 Appendix A.2 Reducible incomplete elliptic integrals

The category of incomplete elliptic integrals, which can be reduced to complete elliptic integrals is easier to handle as compared with non-reducible ones. An elliptic integral appearing from the upper limit contribution is

$$\begin{aligned}&E[\phi _2(c,e),m_1(c)] \nonumber \\&\,=\!E\!\left[ \!\sin ^{-1}\!\left( \!\frac{-\!\frac{16 (c\!+\!1) c}{2 c (e\!+\!2)\!+\!\sqrt{1\!-\!8 c}\!+\!2 e\!+\!1}\!+\!4 c\!+\!\sqrt{1\!-\!8 c}\!+\!1}{2 \sqrt{1\!-\!8 c}}\!\right) ^{\!\!\!1/2}, \right. \nonumber \\&\qquad \!\left. \frac{2\sqrt{1-8c}}{1+\sqrt{1-8c}-4c-8c^2} \right] \, , \end{aligned}$$
(A.23)

where the amplitude \( \phi _2(c,e)\) reads as

$$\begin{aligned}&\phi _2(c,e) \nonumber \\&\,= \!\sin ^{-1}\!\!\left( \!\frac{\!-\frac{16 (c\!+\!1) c}{2 c (e\!+\!2)\!+\!\sqrt{1\!-\!8 c}\!+\!2 e\!\!+\!1}\!+\!4 c\!+\!\sqrt{1\!-\!8 c}\!+\!1}{2 \sqrt{1\!-\!8 c}}\right) ^{\!\!1/2}\,. \end{aligned}$$
(A.24)

In the limit \( e \rightarrow 0 \) the amplitude \( \phi _2(c,e) \rightarrow \pi /2 \) and this incomplete elliptic integral can be reduced directly to a complete elliptic integral using the reduction formula in eq. (A.4)

$$\begin{aligned} E[\phi _2(c,e),m_1(c)] \,=\,E[m_1(c)] \, . \end{aligned}$$
(A.25)

In this way, all reducible incomplete elliptic integrals are substituted with their corresponding complete elliptic integrals. Upon substituting all the incomplete elliptic integrals, our final result is expanded in powers of e. No negative powers occur and e can be taken to zero, yielding eq. (83).

Appendix B. Eikonal approximation and result summary

1.1 Appendix B.1 Eikonal approximation to the thrust and c-parameter distribution

In §3.3 and §4.3, we compared the shifted approximation with the LP expression of the exact distribution in figures 3a and 7a, for the thrust and c-parameter distribution, respectively. Here we add the results from the simpler eikonal approximation for comparison. The eikonal case follows from the approximated matrix element squared and is given by the first term in eq. (48) as

$$\begin{aligned}&\overline{\sum } |\mathcal {M}_{\text {eik}}(x_1,x_2)|^2 \,= \, 8(e^2e_q)^2 g_s^2 C_F N_c \frac{1}{3Q^2} \nonumber \\&\quad \times \left( \frac{2}{(1-x_1)(1-x_2)}\right) \,. \end{aligned}$$
(A.26)

Using the above expression and the exact definitions of thrust and c-parameter in eqs (10) and (69), one finds for their respective distributions

$$\begin{aligned}&\frac{1}{\sigma _{0}(s)} \frac{\textrm{d}\sigma }{\textrm{d}\tau } \Bigg \vert _{\text {NLO}} \!=\!\frac{2 \alpha _{s}}{3 \pi }\left( \frac{-4\log {\tau }}{\tau }\!-\!8\!-\!4\log {\tau } \!+\! \mathcal {O}(\tau ) \! \right) , \end{aligned}$$
(A.27)
$$\begin{aligned}&\frac{1}{\sigma _{0}(s)} \frac{\textrm{d}\sigma }{\textrm{d}c} \Bigg \vert _{\text {NLO}} \!=\!\frac{2 \alpha _{s}}{3 \pi }\left( \frac{-4\log {c}}{c}\!-\!12\!-\!8\log {c} \!+\! \mathcal {O}(c) \! \right) \,. \end{aligned}$$
(A.28)

The eikonal matrix element squared generates LL terms at LP correctly, together with some LL and NLL at NLP. It does not capture any NLL term at LP since it lacks contributions from hard-collinear gluon emission. In figures 8a and 8b, we plot these eikonal results together with the thrust and c-parameter distributions computed from the exact approach as given in eqs (28) and (83) along with the shifted approximation results up to NLP from eqs (47) and (101). Clearly for both event shapes, the shifted kinematics methods provides a significantly better approximation than the eikonal approximation.

Table 1 Result of the thrust and the c-parameter distributions calculated using the exact definition of event-shape variables and four different definitions of matrix elements.

1.2 Appendix B.2 Table of results

In table 1, we summarise our results for the thrust and the c-parameter using different approximations of the matrix elements squared: eikonal, exact, shifted kinematics, as well as the remainder/soft quark part.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, N., van Beekveld, M., Laenen, E. et al. Next-to-leading power corrections to event-shape variables. Pramana - J Phys 98, 60 (2024). https://doi.org/10.1007/s12043-024-02743-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02743-0

Keywords

PACS Nos

Navigation