Skip to main content
Log in

Analytical model of low-mass strange stars using Tolman space–time in \((2+1)\) dimensions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

It is hard to explain low-mass strange stars. In this paper, we have modelled these low-mass strange stars using the Tolman IV metric in (\(2+1\)) dimensions. We found that the presence of attractive or positive anisotropic force is the cause for the lower mass of the strange stars in our model. We have also found that the cosmological constant has a significant role in the mass–radius relationship of the stars. We have used our model to predict the radius of a few low-mass strange stars. Our approach is helpful for predicting the crucial parameters of the low-mass strange stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J R Gott and M Alpert, Gen. Relativ. Gravit. 16, 3 (1984)

    Article  Google Scholar 

  2. C Meusburger, Class. Quantum Gravity 26, 5 (2009)

    Article  Google Scholar 

  3. M Banados, C Teitelboim and J Zanelli, Phys. Rev. Lett. 69, 13 (1992)

    Article  Google Scholar 

  4. A A Garcia and C Campuzano, Phys. Rev. D 67, 064014 (2003)

    Article  ADS  Google Scholar 

  5. M Lubo, M Rooman and Ph Marianne, Phys. Rev. D 59, 4 (1999)

    Article  Google Scholar 

  6. R B Mann and S F Ross, Phys. Rev. D 47, 8 (1993)

    Google Scholar 

  7. K Sakamoto and K Shiraishi, Phys. Rev. D 58, 124017 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. A Banerjee, F Rahaman, K Jotania, R Sharma and I Karar, Gen. Relativ. Gravit. 45, 45 (2013)

    Article  Google Scholar 

  9. P Bhar, F Rahaman, A Jawad and S Islam, Astrophys. Space Sci. 360, 1 (2015)

    Article  Google Scholar 

  10. F Rahaman, R Sharma, S Ray, R Maulick and I Karar, Eur. Phys. J. C 72, 7 (2012)

    Article  Google Scholar 

  11. M Kalam, F Rahaman, S Ray, S K Hossein, I Karar and J Naskar, Eur. Phys. J. C 72, 12 (2012)

    Article  Google Scholar 

  12. K Schwarzschild, Preuss. Akad. Wiss. 189, 424 (1916)

    Google Scholar 

  13. J Oppenheimer and G Volkoff, Phys. Rev. 55 (1939)

  14. R C Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  15. S K Maurya, Y K Gupta, S Ray and B Dayanandan, Eur. Phys. J. C 75, 225 (2015)

    Article  ADS  Google Scholar 

  16. S K Maurya, A Banerjee, M K Jasim, J Kumar, A K Prasad and A Pradhan, Phys. Rev. D 99, 044029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. S K Maurya, A Banerjee and S Hansraj, Phys. Rev. D 97, 044022 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Y K Gupta and S K Maurya, Astrophys. Space Sci. 331, 135 (2011)

    Article  ADS  Google Scholar 

  19. S K Maurya, S D Maharaj and D Deb, Eur. Phys. J. C 79, 170 (2019)

    Article  ADS  Google Scholar 

  20. S K Maurya and Y K Gupta, Nonlinear Anal. Real World Appl. 13, 677 (2012)

    Article  MathSciNet  Google Scholar 

  21. S K Maurya, S D Maharaj, J Kumar and A K Prasad, Gen. Relativ. Gravit. 51, 86 (2019)

    Article  ADS  Google Scholar 

  22. K Dev and M Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002)

    Article  Google Scholar 

  23. N Pant, N Pradhan and M H Murad, Int. J. Theor. Phys. 53, 3958 (2014)

    Article  Google Scholar 

  24. S K Maurya and Y K Gupta, Astrophys. Space Sci. 337, 151 (2012)

    Article  ADS  Google Scholar 

  25. N Pant and S Maurya, Appl. Math. Comput. 218, 8260 (2012)

    MathSciNet  Google Scholar 

  26. S K Maurya and Y K Gupta, Int. J. Theor. Phys. 51, 1792 (2012)

    Article  Google Scholar 

  27. S K Maurya and Y K Gupta, Int. J. Theor. Phys. 51, 3478 (2012)

    Article  Google Scholar 

  28. S K Maurya, Y K Gupta, B Dayanandan, M K Jasim and A Al-Jamel, Int. J. Mod. Phys. D 26, 1750002 (2017)

    Article  ADS  Google Scholar 

  29. J Kumar, S K Maurya, A K Prasad and A Banerjee, J. Cosmol. Astropart. Phys. 2019, 005 (2019)

    Article  Google Scholar 

  30. R Sharma, F Rahaman and I Karar, Phys. Lett. B 704, 1 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  31. M Kalam, F Rahaman, S Ray, S M Hossein, I Karar and J Naskar, Eur. Phys. J. C 72, 2248 (2012)

    Article  ADS  Google Scholar 

  32. M K Gokhroo and A L Mehra, Gen. Relativ. Gravit. 26, 75 (1994)

    Article  ADS  Google Scholar 

  33. Z Roupas and G G L Nashed, Eur. Phys. J. C 80, 905 (2020)

    Article  ADS  Google Scholar 

  34. S Molla, B Ghosh and M Kalam, Eur. Phys. J. Plus 135, 362 (2020)

    Article  Google Scholar 

  35. S K Maurya, K Singh, A Errehymy and D Mohammed, Eur. Phys. J. Plus 135, 824 (2020)

    Article  Google Scholar 

  36. S K Maurya, A A K Al Aamri, A M and R Nag, Eur. Phys. J. C 81, 701 (2021)

    Article  ADS  Google Scholar 

  37. H A Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  38. P Haensel, J P Lasota and J L Zdunik, Nucl. Phys. B Proc. Suppl. 80, 1110 (2000)

    Google Scholar 

  39. N Cruz and J Zanelli, Class. Quantum Gravity 12, 975 (1995)

    Article  ADS  Google Scholar 

  40. B Zhang and D Sanwal and G G Pavlov, Astrophys. J. 624, L109 (2005)

    Article  ADS  Google Scholar 

  41. Y L Yue, X H Cui and R X Xu, Astrophys. J. 649, L95 (2006)

    Article  ADS  Google Scholar 

  42. M Murshid, N Rahman, I Radinschi and M Kalam,Pramana – J. Phys. 97, 51 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MM is thankful to CSIR (Grant No. -09/1157(0007)/2019-EMR-I) for providing financial support. MK is grateful to the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India for providing Associateship programme under which a part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehedi Kalam.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, T., Murshid, M., Haldar, P.K. et al. Analytical model of low-mass strange stars using Tolman space–time in \((2+1)\) dimensions. Pramana - J Phys 98, 75 (2024). https://doi.org/10.1007/s12043-024-02741-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02741-2

Keywords

PACS Nos

Navigation