Skip to main content
Log in

Exploring the impact of a moving sink in a reaction–diffusion system: exact dynamics for two simple potentials

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper presents a novel method for solving diffusion–reaction systems exactly in the time domain for linear and flat potential energies with a moving sink. Such systems are commonly modelled by the Smoluchowski equation with a sink term, which is a function of space and time and responsible for reaction phenomena. Obtaining a time-domain solution for such equations analytically is challenging and typically limited to specific cases, necessitating the use of Laplace domain or numerical methods. Our proposed method employs a simple transformation, allowing the solution for a particular potential energy to be derived from known solutions of another potential. Importantly, our approach can be applied to both static and dynamic sinks, including moving linear or nonlinear time-dependent sinks. Overall, this new methodology provides a powerful tool for analysing and understanding reaction–diffusion systems in various contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H A Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  2. J T Hynes, Annu. Rev. Phys. Chem. 36, 573 (1985)

  3. G R Fleming and P G Wolynes, Phys. Today 43, 36 (1990)

    Article  ADS  Google Scholar 

  4. P Hänggi, P Talkner and M Borkovec, Rev. Mod. Phys. 62, 251 (1990)

  5. M Ya Ovchinnikova, Theor. Exp. Chem. 17, 507 (1982)

    Article  Google Scholar 

  6. L D Zusman, Chem. Phys. 80, 29 (1983)

    Article  Google Scholar 

  7. H Sumi and R A Marcus, J. Chem. Phys. 84, 4894 (1986)

  8. B Bagchi, G R Fleming and D W Oxtoby, J. Phys. Chem. 78, 7375 (1983)

    Article  Google Scholar 

  9. B Bagchi and G R Fleming, J. Phys. Chem. 94, 9 (1990)

    Article  Google Scholar 

  10. K L Sebastian, Phys. Rev. A 46, R1732 (1992)

  11. N Chakravarti and K L Sebastian, Chem. Phys. Lett. 204, 496 (1993)

    Article  ADS  Google Scholar 

  12. A Samanta, S K Ghosh and H K Sadhukhan, Chem. Phys. Lett. 168, 410 (1990)

    Article  ADS  Google Scholar 

  13. R C Wade, R R Gabdoulline, S K Lüdemann and V Lounnas, Proc. Natl. Acad. Sci. 95, 5942 (1998)

    Article  ADS  Google Scholar 

  14. D R Livesay, P Jambeck, A Rojnuckarin and S Subramaniam, Biochemistry 42, 3464 (2003)

    Article  Google Scholar 

  15. L Giuggioli, G Abramson, V M Kenkre, R R Parmenter and T L Yates, J. Theor. Biol. 240, 126 (2006)

    Article  ADS  Google Scholar 

  16. G Wilemski and M Fixman, J. Chem. Phys. 60, 878 (1974)

    Article  ADS  Google Scholar 

  17. K Schulten, Z Schulten and A Szabo, Phys. A 100, 599 (1980)

    Article  ADS  Google Scholar 

  18. M Ganguly and A Chakraborty, Phys. A 484, 163 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. N Agmon and J J Hopfield, J. Chem. Phys. 78, 6947 (1983)

    Article  ADS  Google Scholar 

  20. B Bagchi, Molecular relaxation in liquids (Oxford University Press, New York, 2012)

    Google Scholar 

  21. B Bagchi, J. Chem. Phys. 87, 5393 (1987)

    Article  ADS  Google Scholar 

  22. A Chakraborty, J. Chem. Phys. 139, 094101 (2013)

    Article  ADS  Google Scholar 

  23. M Chase, K Spendier and V M Kenkre, J. Phys. Chem. B 120, 3072 (2016)

    Article  Google Scholar 

  24. K Spendier, S Sugaya and V M Kenkre, Phys. Rev. E 88, 062142 (2013)

    Article  ADS  Google Scholar 

  25. R Saravanan and A Chakraborty, Phys. A 536, 120989 (2019)

    Article  MathSciNet  Google Scholar 

  26. Y Silori, S Dey and A K De, Chem. Phys. Lett. 693, 222 (2018)

    Article  ADS  Google Scholar 

  27. J Campbell, J. Phys. A: Math. Theor. 42, 365212 (2009)

  28. M Schwarz Jr and D Poland, J. Chem. Phys. 63, 557 (1975)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors (CS) would like to thank the institute for providing a Half-Time Research Assistantship fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinmoy Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, C., Chakraborty, A. Exploring the impact of a moving sink in a reaction–diffusion system: exact dynamics for two simple potentials. Pramana - J Phys 97, 204 (2023). https://doi.org/10.1007/s12043-023-02684-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02684-0

Keywords

PACS

Navigation