Skip to main content
Log in

Second-grade bioconvection flow of a nanofluid with slip convective boundary conditions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Controlling the heat and mass transfer rates is critical in a wide range of industrial processes because it sometimes determines the quality of the end-product and prevents run-away reactions. In an ongoing basis, a variety of techniques are being introduced, tested and improved to achieve this goal. Among these are the use of nanofluids and microbes. The addition of microbes leads to the rise of a phenomenon known as bioconvection. Although bioconvection has been used for a while now, some of its aspects like the Brownian motion and thermophoresis force on the microbes have been ignored in the past. The current study took into account the microbes’ Brownian motion and thermophoresis parameters, which were previously overlooked by many researchers, to understand their contribution to heat and mass transfer from a theoretical perspective. To gain insight into the new paradigm’s effect, a system of differential equations was formulated and solved using the spectral quasilinearisation method. Our findings revealed that including Brownian motion and thermophoresis parameters was critical in understanding heat and mass transfer in bioconvection models. The microbes’ Brownian motion raises the temperature while simultaneously decreasing the solute and microbe concentrations. The thermophoresis parameter raises the temperature, concentration of solutes and concentration of microbes in the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M E Erdogan and C E Imrak, Math. Probl. Eng. 2008, 1 (2008)

  2. C K Chen, H Lai and W F Chen, Math. Probl. Eng. 2010, 1 (2010)

    Google Scholar 

  3. H Sithole, H Mondal and P Sibanda, Res. Phys. 9, 1077 (2018)

    Google Scholar 

  4. O D Makinde and P O Olanrewaju, Chem. Eng. Commun. 198(7), 920 (2011)

    Article  Google Scholar 

  5. M Dhlamini, H Mondal, P Sibanda and S Motsa, Int. J. Appl. Comput. Math. 7(2), (2021). https://doi.org/10.1007/s40819-021-00983-x

  6. M Dhlamini, H Mondal, P Sibanda and S Motsa, J. Nanofluids 7(5), 917 (2018)

    Article  Google Scholar 

  7. T Javed, N Ali, Z Abbas and M Sajid, Chem. Eng. Commun. 200(3), 327 (2013)

    Article  Google Scholar 

  8. A J S Martinus, Comp. Rev. Food Sci. Food Safety 7(1), 144 (2008)

    Article  Google Scholar 

  9. M Dhlamini, H Mondal, P Sibanda and S Motsa, Int. J. Ambient Energy 43, 14951 (2020)

    Google Scholar 

  10. Yu Yongjae, J. Geophys. Res. 116, B09101 (2011)

    ADS  Google Scholar 

  11. J L Gustin, Risk Anal. 12(4), 475 (1992)

    Article  Google Scholar 

  12. Z Gyenes, Loss Prevention Bulletin (256) (2017)

  13. S Dutta, P K Mondal and P Goswami, Phys. Scr. 94(2), 025002 (2019)

    Article  ADS  Google Scholar 

  14. P K Mondal, U Ghosh, A Bandopadhyay, D DasGupta and S Chakraborty, Phys. Rev. E 88(2), 023022 (2013)

  15. H Gaikwad and P K Mondal, Electrophoresis 38(5), 596 (2017)

    Article  Google Scholar 

  16. S R Gorthi, P K Mondal and G Biswas, Phys. Rev. E 96(1), 013113 (2017)

    Article  ADS  Google Scholar 

  17. P K Mondal and S Wongwises, Part E: J. Process Mech. Eng. 234(4), 318 (2020)

    Google Scholar 

  18. S U S Choi and J A Eastman, Enhancing thermal conductivity of fluids with nanoparticles (Argonne National Lab, 1995)

  19. J C Maxwell, A treatise on electricity and magnetism (Clarendon, Oxford, 1881) Vol. 314, p. 1873

  20. J Lee and I Mudawar, Int. J. Heat Mass Transfer 50(3–4), 452 (2007)

  21. R S Shawgo, A C R Grayson, Y Li and M J Cima, Curr. Opinion Solid State Mater. Sci. 6(4), 329 (2002)

  22. M K Nayak, J Prakash, D Tripathi, V S Pandey, S Shaw and O D Makinde, Heat Transf.-Asian Res. 49(1), 135 (2019)

    Article  Google Scholar 

  23. S Shaw, P K Kameswaran, M Narayana and P Sibanda, Int. J. Biomath. 07(01), 1450005 (2014)

    Article  Google Scholar 

  24. A V Kuznetsov, Int. Commun. Heat Mass Transfer 38(5), 548 (2011)

    Article  Google Scholar 

  25. T J Pedley, N A Hill and J O Kessler, J. Fluid Mech. 195, 223 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  26. T J Pedley, J. Fluid Mech. 762, R6 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. M Dhlamini, H Mondal, P Sibanda and S Motsa, J. Central South University 27(3), 824 (2020)

    Article  Google Scholar 

  28. H G Lee and J Kim, Eur. J. Mech.-B/Fluids 52, 120 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. W N Mutuku and O D Makinde, Comput. Fluids 95, 88 (2014)

    Article  MathSciNet  Google Scholar 

  30. M A Bees and N A Hill, J. Math. Biol. 38(2), 135 (1999)

    Article  MathSciNet  Google Scholar 

  31. S Ghorai and N A Hill, J. Fluid Mech. 400, 1 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  32. N J R Kraakman, J R Rios and M C M Loosdrecht, Appl. Microbiol. Biotechnol. 91(4), 873 (2011)

    Article  Google Scholar 

  33. S M Sauid, J Krishnan, T H Ling and M V P S Veluri, BioMed Research International (2013)

  34. E B V Dussan, J. Fluid Mech. 77(4), 665 (1976)

    Article  ADS  Google Scholar 

  35. A Maali and B Bhushan, Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. 370(1967), 2304 (2012)

    Article  ADS  Google Scholar 

  36. C Tropea, A L Yarin and J F Foss, Springer handbook of experimental fluid mechanics (Springer, 2007) Vol. 1

  37. M K Nayak, S Shaw, V S Pandey and A J Chamkha, Indian J. Phys. 92(8), 1017 (2018)

    Article  ADS  Google Scholar 

  38. K R Rajagopal, On boundary conditions for fluids of the differential type, in: Navier Stokes equations and related nonlinear problems (Springer, 1995) pp. 273–278

  39. M Dhlamini, H Mondal, P Sibanda and S Motsa, Int. J. Ambient Energy 43(1), 1495 (2022)

    Article  Google Scholar 

  40. S Mukhopadhyay and A Ishak, J. Appl. Math. 2012, 491695 (2012)

    Article  Google Scholar 

  41. T Hayat, M Imtiaz and A Alsaedi, J. Central South University 22, 3211 (2015)

    Article  Google Scholar 

  42. S Liao, Beyond perturbation (Chapman and Hall/CRC, 2003)

  43. S S Motsa, S F Mutua and S Stanford, Nonlinear Systems – Design, Analysis, Estimation and Control. (InTech, 2016)

  44. M Dhlamini, A mathematical study of boundary layer nanofluid flow using spectral quasilinearization methods for the degree of doctor of philosophy (2020)

  45. R Bellman and R Kalaba, Quasilinearization and nonlinear boundary-value problems (American Elsevier Publishing Co., 1965) Vol. 8

  46. S Mishra, H Mondal and P K Kundu, J. Appl. Comput. Mech. 9, 804 (2023)

    Google Scholar 

  47. A Sarkar, H Mondal and R Nandkeolyar, Int. J. Amb. Eng. 44(1), 1931 (2023). https://doi.org/10.1080/17455030.2022.2055200

  48. A Shojaei, A J Amiri, S S Ardahaie, K Hosseinzadeh and D D Ganji, Case Stud. Therm. Eng. 13, 100384 (2019)

    Article  Google Scholar 

  49. P S Reddy, P Sreedevi and A J Chamkha, Heat Transf.-Asian Res. 46(7), 815 (2016)

    Article  Google Scholar 

  50. S Shateyi, S S Motsa and P Sibanda, Math. Probl. Eng. 2010, 1 (2010)

    Article  Google Scholar 

  51. B I Olajuwon, J I Oahimire and M Ferdow, Eng. Sci. Technol., an Int. J. 17(4), 185 (2014)

    Article  Google Scholar 

  52. M G Reddy, P V Kumari and P Padma, J. Nano-fluids 7(3), 428 (2018)

    Article  Google Scholar 

  53. M Khan, M Rahman and M Manzur, Results Phys. 7, 878 (2017)

    Article  ADS  Google Scholar 

  54. H Basha, G J Reddy, Abhishek, A Killead, V Pujari and N Naresh Kumar, Heat Transf-Asian Res. 48(5), 1595 (2019)

  55. N A Shah, S J Yook and O Tosin, Sci. Rep. 12(1), 5445 (2022)

    Article  ADS  Google Scholar 

  56. S Zuhra, N S Khan, Z Shah, S Islam and E Bonyah, AIP Adv. 8(10), 105210 (2018)

    Article  ADS  Google Scholar 

  57. S Zuhra, N S Khan and S Islam, Comput. Appl. Math. 37(5), 6332 (2018)

    Article  MathSciNet  Google Scholar 

  58. J A Kim, E M Yeatman and A J Thompson, Biomed. Opt. Express 12(7), 3917 (2021)

    Article  Google Scholar 

  59. I Corbeski, V Horn, R A V Valk, U B Paige, R T Dame and H Ingen, Microscale thermophoresis analysis of chromatin interactions, in: Methods in molecular biology (Springer, New York, 2018) pp. 177–197

  60. W Shao, R Sharma, M H Clausen and H V Scheller, Plant Methods 16(1), 99 (2020)

    Article  Google Scholar 

  61. M Dhlamini, P K Kameswaran, P Sibanda, S Motsa and H Mondal, J. Comput. Design Eng. 6(2), 149 (2018)

    Article  Google Scholar 

  62. M Dhlamini, H Mondal, P Sibanda, S S Mosta and S Shaw, Pramana – J. Phys. 96(2), 112 (2022)

    Article  ADS  Google Scholar 

  63. A Malvandi and D D Ganji, Int. J. Therm. Sci. 84, 196 (2014)

    Article  Google Scholar 

  64. F G Awad, S M S Ahamed, P Sibanda and M Khumalo, PLOS ONE 10(8), e0135914 (2015)

    Article  Google Scholar 

  65. M S Alam, Science & Technology Asia 21(3), 46 (2016)

  66. A K Kumar, V Sugunamma, N Sandeep and J V Ramana Reddy, Multidiscip. Model. Mater. Struct. 15(1), 103 (2019)

    Article  Google Scholar 

  67. H C Berg, Random walks in biology, in: Random walks in biology (Princeton University Press, 2018)

  68. G Li, L K Tam and J X Tang, Proc. Natl Acad. Sci. 105(47), 18355 (2008)

    Article  ADS  Google Scholar 

  69. K A Floyd, A R Eberly and M Hadjifrangiskou, Adhesion of bacteria to surfaces and biofilmformation on medical devices, in: Biofilms and implantable medical devices (Elsevier, 2017) pp. 47–95

  70. F Mabood, S M Ibrahim and W A Khan, Results Phys. 6, 1015 (2016)

    Article  ADS  Google Scholar 

  71. Y D Reddy, D Ramya and L A Babu, J. Nanofluids 5(6), 889 (2016)

    Article  Google Scholar 

  72. A Ebaid, F Al Mutairi and S M Khaled, Adv. Math. Phys. 2014, 538950 (2014)

    Article  Google Scholar 

  73. L Zheng and X Zhang, Differential transform method, in: Modeling and analysis of modern fluid problems (Elsevier, 2017) pp. 179–251

  74. S Mukhopadhyay, Int. J. Chem. Reactor Eng. 13(1), 29 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiranmoy Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhlamini, M., Zondo, K., Mondal, H. et al. Second-grade bioconvection flow of a nanofluid with slip convective boundary conditions. Pramana - J Phys 97, 197 (2023). https://doi.org/10.1007/s12043-023-02676-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02676-0

Keywords

PACS Nos

Navigation