Skip to main content
Log in

Heat and mass transfer on MHD flow of Jeffrey nanofluid based on Cu and TiO2 over an inclined plate and diffusion-thermo and radiation absorption effects

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The consequences of radiation absorption and diffusion-thermo on MHD incompressible water-based Jeffrey nanofluid (Cu and TiO2) free convection heat and mass transmission across an inclined plate embedded in a porous medium with changing boundary conditions are investigated in this work. The researchers looked at Cu–water and TiO2–water, which are considered nanofluids. The flow dimensionless governing differential equations for this investigation are solved analytically using the perturbation method. The effects of various important parameters on velocity, temperature, skin friction and Nusselt number within the boundary layer are discussed for Cu–water and TiO2–water-based nanofluid with the help of graphs. The predicted consequences indicate that the nanoparticles in the base fluid improve the heat transfer process significantly. In addition, the velocity and temperature profiles improve when there is an increase in the amount of radiation absorption, whereas velocity and temperature have observed opposite behaviour in the case of enhanced diffusion thermoparameters. On the other hand, the temperature will decrease due to increased thermal radiation and chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S U S Choi, ASME J. Heat Trans. 66, 99 (1995)

    Google Scholar 

  2. M Qasim, Alex. Eng. J. 52, 571 (2013)

    Article  Google Scholar 

  3. K Ahmad, Z Hanouf and A Ishak, AIP Adv. 6, 035024 (2016)

    Article  ADS  Google Scholar 

  4. P V S Narayana and D H Babu, J. Taiwan Inst. Chem. Eng. 59, 18 (2016)

    Article  Google Scholar 

  5. M Saqib, F Ali, I Khan, N A Sheikh, S A A Jan and Samiulhaq, Alex. Eng. J. 57, 1849 (2018)

  6. H Alfvén, Nature 150, 405 (1942)

    Article  ADS  Google Scholar 

  7. G R Reddy and K R Reddy, Heat Transfer 51, 7307 (2022)

    Article  Google Scholar 

  8. N Girish, O D Makinde and M Sankar, Defect Diffusion Forum 387, 442 (2018)

    Article  Google Scholar 

  9. M Sankar, Y Park, J M Lopez and D Younghae, Transp. Porous Med. 91, 753 (2012)

    Article  Google Scholar 

  10. N K Reddy, H A K Swamy, M Sankar and B Jang, Case Stud. Therm. Eng. 42, 102719 (2023)

    Google Scholar 

  11. M Sankar and M Venkatachalappa, In. J. Fluid Mech. Res. 35, 19 (2008)

    Article  Google Scholar 

  12. A A Khan, R Ellahi and K Vafai, Adv. Math. Phys. 2012, 169642 (2012)

    Google Scholar 

  13. M Kumar and P K Mondal, J. Thermophys. Heat Transf. 37, 213 (2023)

    Article  Google Scholar 

  14. M Kumar and P K Mondal, Colloids Surf. A: Physiochem. Eng. Aspect 635, 128077 (2021)

    Article  Google Scholar 

  15. M Kumar and P K Mondal, Phys. Scr. 96, 125014 (2021)

    Article  ADS  Google Scholar 

  16. S Li et al, Sci. Rep. 13, 2666 (2023)

    Article  ADS  Google Scholar 

  17. Y S Kumar, S Hussain, K Raghunath, F Ali, K Guedri, S M Eldin and M I Khan, Sci. Rep. 13, 4021 (2023)

    Article  ADS  Google Scholar 

  18. K Raghunath, J. Nanofluids 12, 767 (2023)

    Article  Google Scholar 

  19. K Raghunath, R M Ramana, V R Reddy and M Obulesu, J. Nanofluids 12, 147 (2023)

    Article  Google Scholar 

  20. S Maatoug, K H Babu, V V L Deepthi, K Ghachem, K Raghunath, G Charankumar and S U Khan, J. Indian Chem. Soc. 100, 100831 (2023)

    Article  Google Scholar 

  21. T B Omar, K Raghunath, F Ali, M Khalid, E S M Tag-ElDin, M Oreijah, K Guedri, N B Khedher and M I Khan, Catalysts 12, 1233 (2022)

    Article  Google Scholar 

  22. V V L Deepthi, M A M Lashin, N R Kumar, K Raghunath, F Ali, M Oreijah, K Guedri, E S M Tag-ElDin, M I Khan and M G Ahmed, Micromachines 13, 1566 (2022)

    Article  Google Scholar 

  23. G Aruna, K Haribabu, B Venkaeshwarlu and K Raghunath, Heat Transfer 52, 780 (2023)

    Article  Google Scholar 

  24. K Raghunath and R Mohanaramana, Int. Commun. Heat Mass Transf. 137 106287 (2022)

    Article  Google Scholar 

  25. K Raghunath, R Mohanaramana, G Nagesh, G Charankumar, S U Khan and M I Khan, Waves Random Comput. Media (2023) (in press)

  26. M Kumar and P K Mondal, Phys. Fluids 33, 093113 (2021)

    Article  ADS  Google Scholar 

  27. M Kumar and P K Mondal, J. Fluids Eng. 145, 091402 (2023)

    Article  Google Scholar 

  28. P K Tyagi, R Kumar and P K Mondal, Phys. Fluids 32, 121301 (2020)

    Article  ADS  Google Scholar 

  29. S K Mehta and P K Mondal, J. Therm. Anal. Calorim. 147, 599 (2022)

    Article  Google Scholar 

  30. P K Mondal and S Wongwises, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 234, 318 (2020)

  31. E R G Eckert and R M Drake, Analysis of heat and mass transfer (Mc-Graw Hill, New York, 1972)

    MATH  Google Scholar 

  32. B K Jha and A K Singh, Astrophys. Space Sci. 173, 251 (1990)

    Article  ADS  Google Scholar 

  33. M Q Brewster, Thermal radiative transfer properties (Wiley, New York, 1972), ISBN: 978-0-471-53982-7

  34. F M Abbasi, T Hayat and F Alsaadi, Physica E 68, 123 (2015)

    Article  ADS  Google Scholar 

  35. F M Abbasi, T Hayat and F Alsaadi, Int. J. Mod. Phys. B 9, 1 (2015)

    Google Scholar 

Download references

Acknowledgements

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R399), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ijaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodi, R., Ali, F., Khalid, M. et al. Heat and mass transfer on MHD flow of Jeffrey nanofluid based on Cu and TiO2 over an inclined plate and diffusion-thermo and radiation absorption effects. Pramana - J Phys 97, 202 (2023). https://doi.org/10.1007/s12043-023-02673-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02673-3

Keywords

PACS Nos

Navigation