Skip to main content
Log in

Trapping of agglomerated nanoparticles by the acoustic field: influence of particle diameter and density on the trap efficiency

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Acoustic force field has been studied for its use in trapping submicron particulates of various sizes and densities. Both wave and fluid dynamics have been used to study the effect of various particulate sizes and densities. A numerical model was used to arrive at quantitative trap efficiency data for the combined size and density variations. The particles used in the present work are assumed to be agglomerations of nanoparticles (ANPs) produced via the vapour condensation route. The particles present in the domain have considerable porosity and their skeletal densities are very dissimilar to their respective bulk densities. The study has been done for acoustic waves of frequency 40 kHz. Particles of uniform sizes and densities are introduced into the acoustic force field in independent case studies, to obtain trap efficiency of the system. The work presented not only elaborates on the effects of size and density on the trap efficiency, but also estimates trap efficiency for any given size less than 1 mm and density less than 150 kg/m\(^3\). These studies provide quantitative data for employing this technique in various areas dealing with synthesis and collection of ANPs. The study helps in addressing the major problem of contamination due to conventional collection methods as a result of their contact with the synthesis chamber. It also provides theoretical estimate of the quantities that can be effectively trapped/collected. Detailed analysis of the acoustic forces on the ANPs present in the domain have been reported in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W Altberg, Ann. der Phys. 328, 267 (1907)

    Article  ADS  Google Scholar 

  2. D Foresti, M Nabavi, M Klingauf, A Ferrari and D Poulikakos, Proc. Natl Acad. Sci. 110, 12549 (2013)

    Article  ADS  Google Scholar 

  3. T Hoshi, Y Ochiai and J Rekimoto, Jpn. J. Appl. Phys. 53, 07KE07 (2014)

    Article  Google Scholar 

  4. M A B Andrade, A L Bernassau and J  C Adamowski, Appl. Phys. Lett. 109, 044101 (2016)

    Article  ADS  Google Scholar 

  5. D Baresch, J L Thomas and R Marchiano, J. Appl. Phys. 113, 184901 (2013)

    Article  ADS  Google Scholar 

  6. S Ann Seah, B W Drinkwater, T Carter, R Malkin and S Subramanian, IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 61, 1233 (2014)

    Article  Google Scholar 

  7. C R P Courtney, C E M Demore, H Wu, A Grinenko, P D Wilcox, S Cochran and B W Drinkwater, Appl. Phys. Lett. 104, 154103 (2014)

    Article  ADS  Google Scholar 

  8. A Marzo, S Ann Seah, B W Drinkwater, D Ranjan Sahoo, B Long and S Subramanian, Nature Commun. 6, 8661 (2015)

    Article  ADS  Google Scholar 

  9. D Baresch, J L Thomas and R Marchiano, Phys. Rev. Lett. 116, 024301 (2016)

    Article  ADS  Google Scholar 

  10. J H Lopes, M Azarpeyvand and G T Silva, IEEE Trans Ultrasonics Ferroelectr. Freq. Control 63, 186 (2016)

    Article  Google Scholar 

  11. T Tang and L Huang, J. Sound Vib. 509, 116256 (2021)

    Article  Google Scholar 

  12. T Tang and L Huang, J. Sound Vib. 532, 117012 (2022)

    Article  Google Scholar 

  13. T Tang and L Huang, Phys. Rev. E 105, 055110 (2022)

    Article  ADS  Google Scholar 

  14. T Tang and L Huang, The J. Acoust. Soc. Am. 152, 2934 (2022)

    Article  ADS  Google Scholar 

  15. T Tang, G Silva, L Huang and X Han, Phys. Rev. E 106, 045108 (2022)

    Article  ADS  Google Scholar 

  16. T Tang, C Shen and L Huang, J. Sound Vib. 554, 117694 (2023)

    Article  Google Scholar 

  17. W  J Xie, C  D Cao, Y  J Lü and B  Wei, Phys. Rev. Lett. 89, 104304 (2002)

    Article  ADS  Google Scholar 

  18. L A Crum, The J. Acoust. Soc. Am. 50, 157 (1971)

    Article  ADS  Google Scholar 

  19. S  Z Hoque and A  K Sen, Phys. Fluids 32, 072004 (2020)

    Article  ADS  Google Scholar 

  20. A Lenshof, C Magnusson and T Laurell, Lab. Chip 12, 1210 (2012)

    Article  Google Scholar 

  21. M  Barmatz and P  Collas, The J. Acoust. Soc. Am. 77, 928 (1985)

    Article  ADS  Google Scholar 

  22. J Lee, S-Y Teh, A Lee, H H Kim, C Lee and K K Shung, Appl. Phys. Lett. 95, 073701 (2009)

    Article  ADS  Google Scholar 

  23. G T Silva and A L Baggio, Ultrasonics 56, 449 (2015)

    Article  Google Scholar 

  24. G T Silva, J  H Lopes and F G Mitri, IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 60, 1207 (2013)

    Article  Google Scholar 

  25. D Baresch, J-L Thomas and R Marchiano, J. Acoust. Soc. Am. 133, 25 (2013)

    Article  ADS  Google Scholar 

  26. J P Leão-Neto and G T Silva, Ultrasonics 71, 1 (2016)

    Article  Google Scholar 

  27. J P Leão-Neto, J H Lopes and G T Silva, Phys. Rev. Appl. 6, 2 (2016)

    Article  Google Scholar 

  28. G T Silva, J H Lopes, J P Leão-Neto, M K Nichols and B W Drinkwater, Phys. Rev. Appl. 11, 5 (2019)

    Article  Google Scholar 

  29. B Zhao, H Shen and Y Kang, Powder Technol. 145, 47 (2004)

    Article  Google Scholar 

  30. L  P Gor’kov, Sov. Phys. Doklady 6, 773 (1962)

    ADS  Google Scholar 

  31. A Marzo, M Caleap and B W Drinkwater, Phys. Rev. Lett. 120, 044301 (2018)

    Article  ADS  Google Scholar 

  32. B Zhao, H Shen and Y Kang, Powder Technol. 145, 47 (2004)

    Article  Google Scholar 

  33. https://mega.nz/file/tdpWXZAC#o5VIhqFDcZbnMEPGgaNQWSPgzCXPZTTRQtrpnrUuIxU

Download references

Acknowledgements

This research activity received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P R KANDADA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KANDADA, S.P.R., Balasubramanian, C. Trapping of agglomerated nanoparticles by the acoustic field: influence of particle diameter and density on the trap efficiency. Pramana - J Phys 97, 195 (2023). https://doi.org/10.1007/s12043-023-02663-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02663-5

Keywords

PACS Nos

Navigation