Skip to main content
Log in

Influence of altered parasitic aspects on the device structure for efficient organic solar cells

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The higher efficiencies of organic solar cells (OSCs) are critical for improving the stability and reliability of diverse operating states by performing a drift–diffusion approach. This concern has explored the effect of parasitic resistances in the optimised OSC measured under intense light and dark illumination. The significant interpretations of temperature and light intensity dependency on photovoltaic (PV) parameters including the open-circuit voltage (VOC), short-circuit current density (JSC), fill-factor (FF) and the overall power conversion efficiency (PCE) have been investigated systematically. The numerical approach also revealed that the variance in the bandgap (Eg) along with the trap density (Nt) of the P3HT:PC61BM absorber is a major contributor to deviations in JSC and VOC. The designed OSC demonstrates the appropriate parasitic components comprised of series resistance (RS of 1 Ω cm2) and shunt resistance (RSH of 103 Ω cm2), which appears to be one of the optimal strategies to achieve an excellent PCE of 8.15%. This approach will serve as a combined roadmap for revealing the necessity of the full potential of the absorber material on the performance of OSC structures shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C Wöpke et al, Nat. Commun. 13, 3786 (2022)

    Article  ADS  Google Scholar 

  2. Y Zhang et al, Nano Energy 93, 106858 (2022)

    Article  Google Scholar 

  3. G Perrier et al, Sol. Energy Mater. Sol. 101, 210 (2012)

    Article  Google Scholar 

  4. Y Gao et al, Adv. Mater. Int. 2, 1400555 (2015)

    Article  Google Scholar 

  5. R C I MacKenzie et al, J. Chem. Phys. 132, 064904 (2010)

    Article  ADS  Google Scholar 

  6. H Mäckel et al, Phys. Rev. Appl. 9, 034020 (2018)

    Article  ADS  Google Scholar 

  7. R C I MacKenzie et al, Adv. Energy Mater. 6, 1501742 (2016)

    Article  Google Scholar 

  8. B Philippa et al, Sci. Rep. 4, 1 (2014)

  9. W R Erwin et al, J. Phys. Chem. C 122, 7859 (2018)

    Article  Google Scholar 

  10. R C I MacKenzie et al, Adv. Energy Mater. 2, 662 (2012)

    Article  Google Scholar 

  11. J H Kim et al, Electron. Mater. Lett. 12, 383 (2016)

    Article  ADS  Google Scholar 

  12. T Kirchartz et al, J. Phys. Chem. C 116, 7672 (2012)

    Article  Google Scholar 

  13. D Gogoi et al, Optic. Mater. 143, 114238 (2023)

  14. R Dattani et al, J. Mater. Chem. A 2, 14711 (2014)

    Article  Google Scholar 

  15. B Arredondo et al, Sol. Energy 232, 120 (2022)

    Article  ADS  Google Scholar 

  16. F Deschler et al, Phys. Chem. Chem. Phys. 15, 764 (2013)

    Article  ADS  Google Scholar 

  17. M N Zidan et al, Mater. Res. Express 8, 095508 (2021)

    Article  ADS  Google Scholar 

  18. L Zhu et al, Nat. Mater. 21, 656 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  19. M Abdallaoui et al, Opt. Mater. 105, 109916 (2020)

    Article  Google Scholar 

  20. S Bhattarai et al, IEEE Trans. Electron Devices 69, 3217 (2022)

  21. E Li et al, Chem. Phys. Lett. 553, 36 (2012)

    Article  ADS  Google Scholar 

  22. D A Palacios-Gómez et al, ACS Appl. Energy Mater. 4, 10867 (2021)

    Article  Google Scholar 

  23. B Kadem et al, Optik 204, 164153 (2020)

    Article  ADS  Google Scholar 

  24. D A Vithanage et al, Nat. Commun. 4, 2334 (2013)

    Article  ADS  Google Scholar 

  25. H K H Lee et al, Sol. RRL 3, 1800207 (2019)

    Article  Google Scholar 

  26. S Solak et al, Solar RRL 5, 2100787 (2021)

    Article  Google Scholar 

  27. Z Kan et al, J. Mater. Chem. A 4, 1195 (2016)

    Article  MathSciNet  Google Scholar 

  28. J A Röhr et al, J. Appl. Phys. 128, 165701 (2020)

    Article  ADS  Google Scholar 

  29. B Qi et al, Phys. Chem. Chem. Phys. 15, 8972 (2013)

    Article  Google Scholar 

  30. D Gogoi et al, Phys. Scr. 98, 085908 (2023)

  31. S Sen et al, Braz. J. Phys. 51, 1661 (2021)

    Article  ADS  Google Scholar 

  32. C Wang et al, J. Mater. Chem. A 5, 3995 (2017)

    Article  ADS  Google Scholar 

  33. B Xiao et al, Phys. Rev. Appl. 14, 024034 (2020)

    Article  ADS  Google Scholar 

  34. R Hanfland et al, Appl. Phys. Lett. 103, 063904 (2013)

    Article  ADS  Google Scholar 

  35. R C I MacKenzie et al, J. Phys. Chem. C 115, 9806 (2011)

    Article  Google Scholar 

  36. M M Voigt et al, Sol. Energy Mater. Sol. Cells 95, 731 (2011)

    Article  Google Scholar 

  37. F Padinger et al, Adv. Fun. Mater. 13, 85 (2003)

    Article  Google Scholar 

  38. P Kumar et al, J. Appl. Phys. 105, 104507 (2009)

    Article  ADS  Google Scholar 

  39. T Stubhan et al, Org. Electron. 12, 1539 (2011)

    Article  Google Scholar 

  40. O Urper et al, Mater. Lett. 258, 126641 (2020)

    Article  Google Scholar 

  41. E A J Abadi et al, Mater. Today Energy 25, 100969 (2022)

    Article  Google Scholar 

  42. M Piralaee et al, Optik 251, 168453 (2022)

    Article  ADS  Google Scholar 

  43. C R Kishore et al, Bull. Mater. Sc. 45, 1 (2022)

  44. P Li et al, Optik 265, 169488 (2022)

    Article  ADS  Google Scholar 

  45. F Lmai et al, Optik 262, 169295 (2022)

    Article  ADS  Google Scholar 

  46. L Reshma et al, Org. Electron. 47, 35 (2017)

    Article  Google Scholar 

  47. C P Li et al, Org. Electron. 108, 106602 (2022)

    Article  Google Scholar 

  48. K Hussain et al, Sol. Energy 243, 193 (2022)

    Article  ADS  Google Scholar 

  49. A Vázquez et al, Opt. Mater. 132, 112852 (2022)

    Article  Google Scholar 

  50. U F Ghumman et al, Comput. Mater. Sci. 211, 111491 (2022)

    Article  Google Scholar 

  51. F Kaka et al, Sol. Energy 231, 447 (2022)

    Article  ADS  Google Scholar 

  52. N Barth et al, Sol. Energy Mater. Sol. 148, 87 (2016)

    Article  Google Scholar 

  53. S Chander et al, Energy Rep. 1, 104 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are pleased to express gratitude to Roderick C I MacKenzie at Durham University for developing GPVDM software and making it freely available. The author Dipankar Gogoi wishes to express his deepest gratitude to NIT Arunachal Pradesh, Jote, India for supporting this research on organic solar cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Gogoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, D., Bhattarai, S. & Das, T.D. Influence of altered parasitic aspects on the device structure for efficient organic solar cells. Pramana - J Phys 97, 188 (2023). https://doi.org/10.1007/s12043-023-02660-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02660-8

Keywords

PACS Nos

Navigation