Skip to main content
Log in

Fluid-filled porous medium heated from the bottom and subjected to periodic gravity: analysis and microcontroller implementation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The analysis and microcontroller implementation of a Newtonian fluid-filled porous medium heated from the bottom and subjected to sinusoidal or non-sinusoidal periodic gravity is investigated in this paper. The Newtonian fluid-filled porous medium with a bottom source of heat and subjected to periodic gravity modulation is described by the equation of conservation of energy and hydrodynamic equations modified following the Boussinesq–Darcy approximation. Galerkin-truncated approximation is applied in reducing the resulting set of partial differential equations into a Lorenz-like system of ordinary differential equations of order 1. The Lorenz-like system obtained in this case is found to have three equilibrium points whose stability depends on the system parameters. Without gravity modulation and by varying the scaled Rayleigh number, it is demonstrated that the obtained Lorenz-like system displays steady convection, periodic convection, chaotic convection, reverse period doubling to chaotic convection and coexistence between steady and chaotic convections. In the presence of sinusoidal or non-sinusoidal periodic gravity modulation and by varying the scaled Rayleigh number, the obtained Lorenz-like system exhibits periodic convections, bistable periodic convections and period doubling to chaotic convections. Finally, the existence of periodic convections, bistable periodic convections and chaotic convections is confirmed by microcontroller results obtained from the microcontroller implementation of the obtained Lorenz-like system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C W Horton and F T Rogers Jr, J. Appl. Phys. 16, 367 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  2. E R Lapwood, Math. Proc. Cambridge Phil. Soc. 44, 508 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  3. R A Wooding, J. Fluid Mech. 2, 273 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  4. I G Donaldson, J. Geophys. Res. 67, 3449 (1962)

    Article  ADS  Google Scholar 

  5. J W Elder, J. Fluid Mech. 27, 29 (1967)

    Article  ADS  Google Scholar 

  6. J W Elder, J. Fluid Mech. 27, 609 (1967)

    Article  ADS  Google Scholar 

  7. R N Horne and M J O’Sullivan, J. Fluid Mech. 66, 339 (1974)

    Article  ADS  Google Scholar 

  8. R N Horne and M J O’Sullivan, In Proceedings of the 5th Australian Conference on Hydraulics and Fluid Mechanics, 2, 231 (1974)

  9. R N Horne and M J O’Sullivan, Phys. Fluids 21, 1260 (1978)

    Article  ADS  Google Scholar 

  10. J P Caltagirone, C R Acad. Sci. Paris 278, 259 (1974)

    Google Scholar 

  11. J P Caltagirone, J. Fluid Mech. 72, 269 (1975)

    Article  ADS  Google Scholar 

  12. E Palm, J E Weber and O Kvernvold, (1972) J. Fluid Mech. 54, 153

    Article  ADS  Google Scholar 

  13. F H Busse and D D Joseph, J. Fluid Mech. 54, 521 (1972)

    Article  ADS  Google Scholar 

  14. J M Straus, J. Fluid Mech. 64, 51 (1974)

    Article  ADS  Google Scholar 

  15. J P Caltagirone, Int. J. Refrigeration 1, 13 (1978)

    Article  Google Scholar 

  16. J P Caltagirone, M Cloupeau and M Combarnous, C R Acad. Sci. Paris B 273, 833 (1971)

    Google Scholar 

  17. R N Horne, Ph.D. thesis, Transient effects in geothermal convective system (ResearchSpace@ Auckland, 1975)

  18. F T Rogers Jr and H L Morrison, J. Appl. Phys. 21, 1177 (1950)

    Article  ADS  Google Scholar 

  19. D R Kassoy and A Zebib, The Phys. Fluids 18, 1649 (1975)

    Article  ADS  MATH  Google Scholar 

  20. M L Sorey, US Government Printing Office, 1044 (1978)

  21. J M Straus and G Schubert, J. Geophys. Res. 82, 325 (1977)

    Article  ADS  Google Scholar 

  22. R N Horne and M J O’Sullivan, Numer. Heat Transfer B: Fundamentals 1, 203 (1978)

    Article  ADS  Google Scholar 

  23. K Allali, Adv. Math. Phys. 2018, 1 (2018)

    Article  Google Scholar 

  24. L J Sheu, L M Tam, J H Chen, H K Chen, K T Lin and Y Kang, Chaos Solitons Fractals 37, 113 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. N D Rosenberg and F J Spera, Int. J. Heat Mass Transfer 35, 1261 (1992)

    Article  Google Scholar 

  26. P Pelce and D Rochwerger, Phys. Rev. A 46, 5042 (1992)

    Article  ADS  Google Scholar 

  27. J Campbell, Int. Metals Rev. 26, 71 (1981)

    Google Scholar 

  28. K Allali, V Volpert and J A Pojman, J. Eng. Math. 41, 13 (2001)

    Article  Google Scholar 

  29. J I D Alexander, J Ouazzani and F Rosenberger, J. Crystal Growth 97, 285–302 (1989)

    Article  ADS  Google Scholar 

  30. T B Benjamin and F J Ursell, Proc. R. Soc. London. Ser. A: Math. Phys. Sci. 225, 505 (1954)

    Article  ADS  Google Scholar 

  31. P M Gresho and R L Sani, J. Fluid Mech. 40, 783 (1970)

    Article  ADS  Google Scholar 

  32. S Govender, Transp. Porous Media 57, 113 (2004)

    Article  Google Scholar 

  33. B Elhajjar, A Mojtabi and M C Charrier-Mojtabi, Int. J. Heat Mass Transfer 52, 165 (2009)

    Article  Google Scholar 

  34. J J Vadasz, J P Meyer and S Govender, Int. Commun. Heat Mass Transfer 45, 100 (2013)

    Article  Google Scholar 

  35. J J Vadasz, J P Meyer and S Govender, Transp. Porous Media 103, 279 (2014)

    Article  MathSciNet  Google Scholar 

  36. Y Wang, J Singer and H H Bau, J. Fluid Mech. 237, 479 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  37. J Tang and H H Bau, J. Fluid Mech. 257, 485 (1993)

    Article  ADS  Google Scholar 

  38. T Boulal, S Aniss, M Belhaq and A Azouani, Int. J. Non-Linear Mech. 43, 852 (2008)

    Article  ADS  Google Scholar 

  39. E N Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  40. G Wallis, Z. Angew. Math. Mech. 64, 71 (1984)

    Google Scholar 

  41. P Vadas and S Olek, Int. J. Heat Mass Transfer 41, 1417 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the Centre for Nonlinear Systems, Chennai Institute of Technology, India via funding number CIT/CNS/2023/Rp-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel Nyang Kibanya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibanya, N.N., Vivekanandan, G., Oumate, A.A. et al. Fluid-filled porous medium heated from the bottom and subjected to periodic gravity: analysis and microcontroller implementation. Pramana - J Phys 97, 175 (2023). https://doi.org/10.1007/s12043-023-02651-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02651-9

Keywords

PACS Nos

Navigation