Skip to main content
Log in

Rational extensions of non-central potentials

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper presents a derivation of exceptional potentials for the novel angle-dependent (NAD) Coulomb potential. Exceptional potentials are a class of potentials with unique properties that can be used to study various physical phenomena. The use of exceptional polynomials is a powerful technique for solving differential equations, and the paper demonstrates its effectiveness in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Hartmann, Theor. Chim. Acta 24, 201 (1972)

    Article  Google Scholar 

  2. X A Zhang, C Ke and D Zheng-Lu, Chin. Phys. 14, 42 (2005), https://doi.org/10.1088/1009-1963/14/1/009

  3. A D Alhaidari, J. Phys. A: Math. Gen. 38, 3409 (2005)

    Article  ADS  Google Scholar 

  4. Bulent Gonul and Ilker Zorba, Phys. Lett. A 269, 83 (2000), https://doi.org/10.1016/S0375-9601(00)00252-8

    Article  ADS  MathSciNet  Google Scholar 

  5. A Arda and R Sever, J. Math. Chem. 50, 1484 (2012), https://doi.org/10.1007/s10910-012-9984-y

    Article  MathSciNet  Google Scholar 

  6. A D Alhaidari and H Bahlouli, arXiv:1808.08696

  7. M Eshgii, H Mehraban and S Mikhdair, Pramana – J. Phys. 88, 73 (2017), https://doi.org/10.1007/s12043-017-1375-2

  8. F Yasuk, C Berkdemir and A Berkdemir, arXiv:quant-ph/0410144

  9. M V Carpio-Bernido, M A Maulion and C C Bernido, AIP Conf. Proc. 2286, 040003 (2020), https://doi.org/10.1063/5.0030119

    Article  Google Scholar 

  10. R Dutt, A Gangopadhyaya and U P Sukhatme, Am. J. Phys. 65, 400 (1997)

    Article  ADS  Google Scholar 

  11. D Gómez-Ullate, N Kamran and R Milson, J. Approx. Theory 162, 987 (2010), arXiv:0805.3376

    Article  MathSciNet  Google Scholar 

  12. D Gómez-Ullate, N Kamran and R Milson, J. Math. Anal. Appl. 359, 352 (2009), arXiv:0807.3939

    Article  MathSciNet  Google Scholar 

  13. B Bagchi, C Quesne and R Roychoudhury, Pramana – J. Phys. 73(2), 337 (2009), https://doi.org/10.1007/s12043-009-0126-4

  14. C Quesne, SIGMA 5, 084 (2009), and references therein, arXiv:0906.2331

  15. S Odake and R Sasaki, Phys. Lett. B 164, 70 (2011)

    Google Scholar 

  16. S Odake and R Sasaki, Phys. Lett. B 684, 173 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. R Sasaki, S Tsujimoto and A Zhedanov, J. Phys. A 43(31), 315204 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. K V S Shiv Chaitanya, S Ranjani, P K Panigrahi, R Radhakrishnan and V Srinivasan, Pramana – J. Phys. 85, 53 (2015), https://www.ias.ac.in/article/fulltext/pram/085/01/0053-0063

  19. K Haritha and K V S Shiv Chaitanya, Pramana – J. Phys. 94, 102 (2020), https://doi.org/10.1007/s12043-020-01956-3

  20. A A Rajabi and M A Hamzavi, J. Theor. Appl. Phys. 7, 17 (2013), http://www.jtaphys.com/content/7/1/17

  21. M C Zhang and G Q Huang-Fu, J. Math. Phys. 52, 053518 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  22. Mohammad Reza Pahla-vani, ISBN: 978-953-51-0088-1, intechopen chapter-8, https://doi.org/10.5772/33510 (2012), https://cdn.intechopen.com/pdfs/48411.pdf

  23. N Rowley, J. Phys. A: Math. Gen. 12, 1 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K V S Shiv Chaitanya.

Appendix. Appendix A

Appendix. Appendix A

The radial equation becomes

$$\begin{aligned}{} & {} \frac{\hbar ^2}{2m_0} \left[ \frac{\textrm{d}^2}{\textrm{d}r^2}+\frac{2}{r}\frac{\textrm{d}}{\textrm{d}r}\right] R(r) \nonumber \\{} & {} \quad +\left[ E -\frac{e^4}{4(l+1)^2} -V(r) \right] R(r) = 0, \end{aligned}$$
(A.1)

where

$$\begin{aligned} V(r)= -\frac{e^2}{r} + \frac{\hbar ^2 l(l+1)}{2m_0 r^2}. \end{aligned}$$
(A.2)

The radial coordinate r ranges from 0 to \(\infty \). Now putting

$$\begin{aligned} E=\frac{e^4}{4(l + 1)^2} - \frac{e^4}{4(n + l+ 1)^2} \end{aligned}$$

in (A.1) one gets

$$\begin{aligned}{} & {} -\left[ \frac{\textrm{d}^2}{\textrm{d}r^2}+\frac{2}{r}\frac{\textrm{d}}{\textrm{d}r}\right] R(r)\nonumber \\{} & {} \quad +\frac{2m_0}{\hbar ^2}\left[ \frac{e^4}{4(n + l+ 1)^2} +V(r) \right] R(r) = 0 . \end{aligned}$$
(A.3)

Let

$$\begin{aligned}{} & {} \alpha ^2 = \frac{2m_0}{\hbar ^2}\frac{e^4}{(n + l + 1)^2}-\left[ \frac{\textrm{d}^2}{\textrm{d}r^2}+\frac{2}{r}\frac{\textrm{d}}{\textrm{d}r}\right] R(r)\nonumber \\{} & {} \quad + \left[ \frac{\alpha ^2}{4} -\frac{2m_0}{\hbar ^2}\frac{e^2}{r} + \frac{ l(l+1)}{r^2} \right] R(r) = 0 \end{aligned}$$
(A.4)

or

$$\begin{aligned}{} & {} -\left[ \frac{1}{\alpha ^2}\frac{\textrm{d}^2}{\textrm{d}r^2}+\frac{1}{\alpha }\frac{2}{\alpha r}\frac{\textrm{d}}{\textrm{d}r}\right] R(r) \nonumber \\{} & {} \quad + \left[ \frac{1}{4} -\frac{2m_0}{\hbar ^2}\frac{e^2}{\alpha ^2r} + \frac{ l(l+1)}{\alpha ^2r^2} \right] R(r) = 0 . \end{aligned}$$
(A.5)

On the change of variable \(y=\alpha r\),

$$\begin{aligned}{} & {} \frac{\textrm{d}R}{\textrm{d}r}=\frac{\textrm{d}y}{\textrm{d}r}\frac{\textrm{d}R}{\textrm{d}y} =\alpha \frac{\textrm{d}R}{\textrm{d}y} \end{aligned}$$
(A.6)
$$\begin{aligned}{} & {} \frac{\textrm{d}^2R}{\textrm{d}r^2}=\frac{\textrm{d}}{\textrm{d}r}\frac{\textrm{d}R}{\textrm{d}y} =\alpha \frac{\textrm{d}R}{\textrm{d}y}\left( \alpha \frac{\textrm{d}R}{\textrm{d}y}\right) =\alpha ^2\frac{\textrm{d}^2R}{\textrm{d}y^2}. \end{aligned}$$
(A.7)

Taking

$$\begin{aligned} \lambda =\frac{2m_0}{\hbar ^2}\frac{1}{\alpha }, \end{aligned}$$

we obtain

$$\begin{aligned}{} & {} \left[ \frac{\textrm{d}^2}{\textrm{d}y^2}+\frac{2}{y}\frac{\textrm{d}}{\textrm{d}y}\right] R(y)\nonumber \\{} & {} \quad + \left[ \frac{\lambda }{y}-\frac{1}{4} - \frac{ l(l+1)}{y^2} \right] R(y) = 0 . \end{aligned}$$
(A.8)

Let the solution to this equation be

$$\begin{aligned} R(y)=y^{l} \exp \left( -\frac{y}{2}\right) L_n^{2l+1} (y) \end{aligned}$$
(A.9)

so that, we obtain the following equation

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}y}R(y)= & {} \left[ \frac{l}{y}-\frac{1}{2}\right] y^{l} \exp \left( -\frac{y}{2}\right) L_n^{2l+1} (y) \nonumber \\{} & {} + y^{l} \exp \left( -\frac{y}{2}\right) \frac{\textrm{d}}{\textrm{d}y} L_n^{2l+1} (y) \end{aligned}$$
(A.10)
$$\begin{aligned} \frac{\textrm{d}^2}{\textrm{d}y^2}R(y)= & {} \left[ \left[ \frac{l}{y}-\frac{1}{2}\right] ^2-\frac{l}{y^2}\right] y^{l} \exp \left( -\frac{y}{2}\right) L_n^{2l+1} (y)\nonumber \\{} & {} +2\left[ \frac{l}{y}-\frac{1}{2}\right] y^{l} \exp \left( -\frac{y}{2}\right) \frac{\textrm{d}}{\textrm{d}y} L_n^{2l+1} (y)\nonumber \\{} & {} +y^{l} \exp \left( -\frac{y}{2}\right) \frac{\textrm{d}^2}{\textrm{d}y^2} L_n^{2l+1} (y). \end{aligned}$$
(A.11)

After performing a series of calculations

$$\begin{aligned}{} & {} \left[ \frac{\textrm{d}^2}{\textrm{d}y^2} + \left[ 2\left[ \frac{l}{y}-\frac{1}{2}\right] +\frac{2}{y}\right] \frac{\textrm{d}}{\textrm{d}y} \right] L_n^{2l+1} (y)\nonumber \\{} & {} \quad +\left[ \left[ \frac{l}{y}-\frac{1}{2}\right] ^2-\frac{l}{y^2}+\frac{2}{y}\left[ \frac{l}{y}-\frac{1}{2}\right] \right] L_n^{2l+1} (y)\nonumber \\{} & {} \quad +\left[ \frac{\lambda }{y}-\frac{1}{4} - \frac{ l(l+1)}{y^2} \right] L_n^{2l+1} (y) = 0. \end{aligned}$$
(A.12)

On simplification

$$\begin{aligned}{} & {} \left[ \frac{\textrm{d}^2}{\textrm{d}y^2} +\frac{1}{y} \left[ 2l+2-y\right] \frac{\textrm{d}}{\textrm{d}y} \right] L_n^{2l+1} (y)\nonumber \\{} & {} \quad +\left[ \frac{l^2}{y^2}+\frac{1}{4}-\frac{l}{y}-\frac{l}{y^2}+\frac{2l}{y^2}\right] L_n^{2l+1} (y)\nonumber \\{} & {} \quad -\left[ \frac{l}{y}+\frac{\lambda }{y}-\frac{1}{4} - \frac{ l(l+1)}{y^2} \right] L_n^{2l+1} (y) = 0 \end{aligned}$$
(A.13)

which reduces to

$$\begin{aligned}{} & {} \left[ y\frac{\textrm{d}^2}{\textrm{d}y^2} + (2l+2-y) \frac{\textrm{d}}{\textrm{d}y} +(\lambda -l-1)\right] \nonumber \\{} & {} \quad \times L_n^{2l+1} (y) = 0. \end{aligned}$$
(A.14)

To verify the supersymmetric partner, we modify eq. (A.8) to

$$\begin{aligned}{} & {} \left[ \frac{\textrm{d}^2}{\textrm{d}y^2}+\frac{2}{y}\frac{\textrm{d}}{\textrm{d}y}\right] R(y) + \left[ \frac{\lambda }{y}-\frac{1}{4}-\frac{V(y)}{y} - \frac{ l(l+1)}{y^2} \right] \nonumber \\{} & {} \quad \times R(y) = 0 . \end{aligned}$$
(A.15)

Let the solution to this equation be

$$\begin{aligned} R(y)=\frac{y^{l} \exp ( -\frac{y}{2})}{(y+k)} L_n^{2l+1} (y), \end{aligned}$$
(A.16)

where \(k=2l+1\). We obtain the following equation

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}y}R(y)= & {} \left[ \frac{l}{y}-\frac{1}{2}-\frac{1}{(y+k)}\right] \frac{y^{l} \exp ( -\frac{y}{2})}{(y+k)} L_n^{2l+1} (y)\nonumber \\{} & {} +\frac{y^{l} \exp ( -\frac{y}{2})}{(y+k)}\frac{\textrm{d}}{\textrm{d}y} L_n^{2l+1} (y) \end{aligned}$$
(A.17)
$$\begin{aligned} \frac{\textrm{d}^2}{\textrm{d}y^2}R(y)= & {} \left[ \left[ \frac{l}{y}-\frac{1}{2}-\frac{1}{(y+k)}\right] ^2\right] \frac{y^{l} \exp ( -\frac{y}{2})}{(y+k)}\nonumber \\{} & {} -\left[ \frac{l}{y^2}+\frac{1}{(y+k)^2}\right] \frac{y^{l} \exp ( -\frac{y}{2})}{(y+k)}\nonumber \\{} & {} +2\left[ \frac{l}{y}-\frac{1}{2}-\frac{1}{(y+k)}\right] \frac{y^{l} \exp ( -\frac{y}{2})}{(y+k)}\nonumber \\{} & {} \times \frac{\textrm{d}}{\textrm{d}y} L_n^{2l+1} (y)\nonumber \\{} & {} +\frac{y^{l} \exp ( -\frac{y}{2})}{(y+k)}\frac{\textrm{d}^2}{\textrm{d}y^2} L_n^{2l+1} (y). \end{aligned}$$
(A.18)

One can see that the only extra contribution comes from \({1}/{(y+k)}\). If this term is not present, it will revert back to the associated Lagrange equation. After performing a series of calculations

$$\begin{aligned}{} & {} \left[ \frac{\textrm{d}^2}{\textrm{d}y^2} +\bigg (\frac{k+1}{y} -1-\frac{2}{(y+k)}\bigg ) \frac{\textrm{d}}{\textrm{d}y}\right] L_n^{2l+1} (y)\nonumber \\{} & {} \quad + \left[ \frac{1}{y}(\lambda -l-1)-\frac{V(y)}{y}+\frac{2}{(y+k)^2}\right] L_n^{2l+1} (y)\nonumber \\{} & {} \quad - \left[ 2\left[ \frac{l}{y}-\frac{1}{2}\right] \frac{1}{(y+k)}-\frac{2}{y(y+k)}\right] \nonumber \\{} & {} \quad \times L_n^{2l+1} (y) = 0 \end{aligned}$$
(A.19)
$$\begin{aligned}{} & {} \left[ \frac{\textrm{d}^2}{\textrm{d}y^2} +\bigg (\frac{(k+1)(y+k)-y(y+k)-2y}{y(y+k)}\bigg ) \frac{\textrm{d}}{\textrm{d}y}\right] \nonumber \\{} & {} \quad \times L_n^{2l+1} (y)\nonumber \\{} & {} \quad + \frac{1}{y}\left[ (\lambda -l-1)-V(y)+\frac{2y}{(y+k)^2}\right] L_n^{2l+1} (y)\nonumber \\{} & {} \quad -\frac{1}{y}\left[ \frac{2l}{(y+k)}+\frac{y}{(y+k)}-\frac{2}{(y+k)}\right] L_n^{2l+1} (y) = 0 \end{aligned}$$
(A.20)
$$\begin{aligned}{} & {} \left[ \frac{\textrm{d}^2}{\textrm{d}y^2} +\bigg (\frac{ky+k+y+k^2-y^2+yk-2y}{y(y+k)}\bigg ) \frac{\textrm{d}}{\textrm{d}y}\right] \nonumber \\{} & {} \quad \times L_n^{2l+1} (y)\nonumber \\{} & {} \quad + \frac{1}{y}\left[ (\lambda -l-1)+\mathcal {V}(y)\right] L_n^{2l+1} (y) = 0 \end{aligned}$$
(A.21)

which reduce to

$$\begin{aligned}{} & {} \left[ y \frac{\textrm{d}^2}{\textrm{d}y^2} +\bigg (\frac{(y-k)(k+y+1)}{(y+k)}\bigg ) \frac{\textrm{d}}{\textrm{d}y}\right] L_n^{2l+1} (y)\nonumber \\{} & {} \quad +\left[ (\lambda -l-1)+\mathcal {V}(y)\right] L_n^{2l+1} (y) = 0, \end{aligned}$$
(A.22)

where

$$\begin{aligned} \mathcal {V}(y)=-V(y)+\frac{2y}{(y+k)^2} -\frac{1}{(y+k)}+\frac{y-k}{(y+k)}.\nonumber \\ \end{aligned}$$
(A.23)

Since the eigenvalues are the same, the last term is equal to

$$\begin{aligned}{} & {} -V(y)+\frac{2y}{(y+k)^2}-\frac{1}{(y+k)}+\frac{y-k}{(y+k)} = \frac{(y-k)}{(y+k)} \end{aligned}$$
(A.24)
$$\begin{aligned}{} & {} V(y)=\frac{2y}{(y+k)^2}-\frac{1}{(y+k)} \end{aligned}$$
(A.25)

It should be clear from eq. (A.15) we have added

$$\begin{aligned} \frac{V(y)}{y}=\frac{2}{(y+k)^2}-\frac{1}{y(y+k)}. \end{aligned}$$
(A.26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haritha, K., Nellambakam, Y., Madhavi, M.B. et al. Rational extensions of non-central potentials. Pramana - J Phys 97, 179 (2023). https://doi.org/10.1007/s12043-023-02649-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02649-3

Keywords

PACS Nos

Navigation