Skip to main content
Log in

Switching dynamics analysis and synchronous control of a non-smooth memristive Hindmarsh–Rose neuron model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A reliable neuron model can accurately estimate and predict complex bioelectrical activities, which provides potential guidance and assistance for designing neurocomputing science and intelligent sensors. To disclose the regulation mechanism of heterogeneous electromagnetic fields on action potential, a non-smooth memristive Hindmarsh–Rose (HR) neuron model is established by introducing a three-stage flux-controlled memristor. Based on the theory of flow switchability, the sufficient and necessary conditions for crossing, grazing and sliding motions of the system are presented and verified. It is particularly interesting that the existence and stability of the equilibrium point of the system by exciting bipolar pulse current have time-varying behaviour. Further, extensive coexisting attractors are discovered by multiple numerical tools. Importantly, the switching dynamics of the coexisting firing modes involving period and chaos are qualitatively discussed by calculating the normal vector field G-functions. Moreover, a Hamilton energy adaptive controller is designed to efficiently achieve the complete synchronisation of the coupling neurons consisting of the non-smooth system via unidirectional synaptic connections under mismatched parameters. These obtained results provide potential theoretical guidance for the lesion, control and treatment of neuron-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R R Li, P Zhang, M Zhang and Z X Yao, Cell Tissue Res. 381, 43 (2020)

    Article  Google Scholar 

  2. H R Lin, C H Wang, Q L Deng, C Xu, Z K Deng and C Zhou, Nonlin. Dyn. 106, 959 (2021)

    Article  Google Scholar 

  3. C N Wang and J Ma, Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  ADS  Google Scholar 

  4. E B Megam Ngouonkadi, H B Fotsin, P Louodop Fotso, V Kamdoum Tamba and Hilda A Cerdeira, Chaos Solitons Fractals 85, 151 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. S K Thottil and R P Ignatius, Nonlin. Dyn. 87, 1879 (2017)

    Article  Google Scholar 

  6. K J Wu, T Q Luo, H W Lu and Y Wang, Neural Comput. Appl. 27, 739 (2016)

    Article  Google Scholar 

  7. J Dong, G J Zhang, Y Xie, H Yao and J Wang, Cogn. Neurodyn. 8, 167 (2014)

    Article  Google Scholar 

  8. H X Wang, Y H Zheng and Q S Lu, Nonlin. Dyn. 88, 2091 (2017)

    Article  Google Scholar 

  9. M Y Ge, Y Jia, Y Xu and L J Yang, Nonlin. Dyn. 91, 515 (2018)

    Article  Google Scholar 

  10. L L Lu, Y Jia, W H Liu and L J Yang, Complexity 2017, 7628537 (2017)

    Google Scholar 

  11. M Lv, C N Wang, G D Ren, J Ma and X L Song, Nonlin. Dyn. 85, 1479 (2016)

    Article  Google Scholar 

  12. M Lv and J Ma, Neurocomputing 205, 375 (2016)

    Article  Google Scholar 

  13. H Bao, A H Hu, W B Liu and B C Bao, IEEE Trans. Neural. Netw. Learn Syst. 31, 502 (2019)

    Article  Google Scholar 

  14. B C Bao, A H Hu, H Bao, Q Xu, M Chen and H G Wu, Complexity 2018, 3872573 (2018)

    Google Scholar 

  15. X L An, S Qiao and L Zhang, Acta Phys. Sin. 70, 40 (2021)

    Google Scholar 

  16. S Qiao and X L An, Pramana – J. Phys. 95, 72 (2021)

    Article  ADS  Google Scholar 

  17. A A Faisal, L Selen and D M Wolpert, Nature Rev. Neurosci. 9, 292 (2008)

    Article  Google Scholar 

  18. R K Upadhyay, A Mondal and W W Teka, Int. J. Bifurc. Chaos 27, 1730019 (2017)

    Article  Google Scholar 

  19. Y X Wang, J Ma, Y Xu, F Q Wu and P Zhou, Int. J. Bifurc. Chaos 27, 1750030 (2017)

    Article  Google Scholar 

  20. Y Xu, Y Jia, M Y Ge, L L Lu, L J Yang and X Zhan, Neurocomputing 283, 196 (2018)

    Article  Google Scholar 

  21. C H Gao, S Qiao and X L An, Chaos Solitons Fractals 160, 112281 (2022)

    Article  Google Scholar 

  22. W Y Liu, S Qiao and C H Gao, Int. J. Mod. Phys. B 36, 2250185 (2022)

    Article  ADS  Google Scholar 

  23. B Y Shen and Z D Zhang, Pramana – J. Phys. 95, 97 (2021)

    Article  ADS  Google Scholar 

  24. W H Mao, Pramana – J. Phys. 96, 79 (2022)

    Article  ADS  Google Scholar 

  25. Y Y Guo, Z G Zhu, C N Wang and G D Ren, Optik 218, 164993 (2020)

    Article  ADS  Google Scholar 

  26. N F F Foka, B Ramakrishnan, A C Chamgoue, A F Talla and V K Kuetche, Eur. Phys. J. B 95, 91 (2022)

    Article  ADS  Google Scholar 

  27. A Karthikeyan, I Moroz, K Rajagopal and P Duraisamy, Chaos Solitons Fractals 150, 111144 (2021)

    Article  Google Scholar 

  28. M M Xing, X L Song, Z Q Yang and Y Chen, Nonlin. Dyn. 100, 2687 (2020)

    Article  Google Scholar 

  29. N F F Foka, B Ramakrishnan, A R Tchamda, S T Kingni, K Rajagopal and V K Kuetche, Eur. Phys. J. B 94, 234 (2021)

    Article  ADS  Google Scholar 

  30. I Hussain, D Ghosh and S Jafari, Appl. Math. Comput. 410, 126461 (2021)

    Google Scholar 

  31. J T Fossi, V Deli, H C Edima, Z T Njitacke, F F Kemwoue and J Atangana, Eur. Phys. J. B 95, 66 (2022)

    Article  ADS  Google Scholar 

  32. B C Bao, A H Hu, Q Xu and H Bao, H G Wu and M Chen, Nonlin. Dyn. 92, 1695 (2018)

    Article  Google Scholar 

  33. H Bao, A H Hu and W B Liu, Int. J. Bifurc. Chaos 29, 1950006 (2019)

    Article  Google Scholar 

  34. F H Min, W Zhang, Z Y Ji and L Zhang, Chaos Solitons Fractals 152, 111369 (2021)

  35. F H Min and J Y Chen, Int. J. Bifurc. Chaos 30, 2050085 (2020)

    Article  Google Scholar 

  36. A C J Luo, Commun. Nonlinear Sci. Numer. Simulat. 10, 1 (2005)

    Article  ADS  Google Scholar 

  37. J Ma, Z Q Yang, L J Yang and J Tang, J. Zhejiang Univ. Sci. A 20, 639 (2019)

    Article  Google Scholar 

  38. X L An and S Qiao, Chao Solitons Fractals 143, 110587 (2021)

    Article  Google Scholar 

  39. S Qiao and C H Gao, Int. J. Bifurc. Chaos. 32, 2250244 (2022)

    Article  Google Scholar 

  40. P Zhou, X F Zhang and J Ma, Nonlin. Dyn. 108, 1681 (2022)

    Article  Google Scholar 

  41. H R Lin, C H Wang, Y C Sun and W Yao, Nonlin. Dyn. 100, 3667 (2020)

    Article  Google Scholar 

  42. L Chua, V Sbitnev and H Kim, Int. J. Bifurc. Chaos 22, 1230011 (2012)

    Article  Google Scholar 

  43. J L Hindmarsh and R M Rose, Nature 296, 162 (1982)

    Article  ADS  Google Scholar 

  44. A C J Luo, Nonlin. Anal. 2, 1030 (2008)

    Google Scholar 

  45. A D Polyanin, A I Chernoutsan, A concise handbook of mathematics, physics and engineering sciences. CRC Press (2010)

  46. Y Xu, Y Jia, J Ma, A Alsaedi and B Ahmad, Chaos Solitons Fractals 104, 435 (2017)

    Article  ADS  Google Scholar 

  47. Y Liu, Y Xu and J Ma, Commun. Nonlinear Sci. Numer. Simulat. 89, 105297 (2020)

    Article  Google Scholar 

  48. Y Zhang, P Zhou, Z Yao and J Ma, Pramana – J. Phys. 95, 49 (2021)

    Article  ADS  Google Scholar 

  49. D H Kobe, Am. J. Phys. 54, 552 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos 11961060 and 11962012), the Key Project of Natural Sciences Foundation of Gansu Province of China (No. 18JR3RA084) and the Graduate Research Grant Project of Northwest Normal University (No. 2022KYZZ-S113) and the Excellent Graduate Innovation Star Scientific Research Project of Gansu Province of China (No. 2023CXZX-324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghua Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Qiao, S. & Gao, C. Switching dynamics analysis and synchronous control of a non-smooth memristive Hindmarsh–Rose neuron model. Pramana - J Phys 97, 161 (2023). https://doi.org/10.1007/s12043-023-02636-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02636-8

Keywords

PACS Nos

Navigation