Skip to main content

Advertisement

Log in

Anomalous pressure dependence of phonon line widths in metallic pyrochlore iridates (Eu\(_{1-x}\)Bi\(_x\))\(_2\)Ir\(_2\)O\(_7\): crossover from incoherent to coherent metal

  • Published:
Pramana Aims and scope Submit manuscript

A Correction to this article was published on 12 December 2023

This article has been updated

Abstract

Pyrochlore iridate (Eu\(_2\)Ir\(_2\)O\(_7\)) shows an interesting metallic phase, termed as incoherent metal, above the metal–insulator transition temperature, with high resistivity and positive temperature coefficient of resistivity (TCR). On increasing the pressure, there is a crossover at pressure P* to a coherent metal phase with positive TCR. We have investigated this crossover using high-pressure Raman spectroscopy and X-ray diffraction for a series of samples (Eu\(_{1-x}\)Bi\(_x\))\(_2\)Ir\(_2\)O\(_7\) (x = 0, 0.02, 0.035 and 0.1) up to \(\sim \)20 GPa. X-ray diffraction data show a clear change in the pressure dependence of Ir–Ir bond distance at P*. The line width of the A\(_{1g}\) phonon shows an anomalous decrease with pressure up to P*, without significant change in the line width of the other three Raman modes with symmetries \(T^1_{2g}\), \(E_{g}\) and \(T^2_{2g}\). We attribute these results to the decreasing contribution of electron–phonon coupling in the incoherent metal till P*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. D Pesin and L Balents, Nature Phys. 6, 376 (2010)

    Article  ADS  Google Scholar 

  2. W Witczak-Krempa, G Chen, Y Kim and L Balents, Ann. Rev. Condens. Matter Phys. 5, 57 (2014)

    Article  ADS  Google Scholar 

  3. B J Kim, H Jin, S Moon, J Kim, B Park, C Leem, J Yu, T Noh, C Kim, S Oh, J Park, V Durairaj, G Cao and E Rotenberg, Phys. Rev. Lett. 101, 076402 (2008)

    Article  ADS  Google Scholar 

  4. B J Kim, H Ohsumi, T Komesu, S Sakai, T Morita, H Takagi and T Arima, Science 323, 1329 (2009)

    Article  ADS  Google Scholar 

  5. J G Rau and M J Gingras, Ann. Rev. Condens. Matter Phys. 10, 357 (2019)

    Article  ADS  Google Scholar 

  6. R Schaffer, E Kin-Ho Lee, B Yang and Y Kim, Rep. Prog. Phys. 79, 094504 (2016)

    Article  ADS  Google Scholar 

  7. D Belitz and T R Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994)

    Article  ADS  Google Scholar 

  8. N Swain, R Tiwari and P Majumdar, Phys. Rev. B. 94, 155119 (2016)

    Article  ADS  Google Scholar 

  9. B Canals, M Elhajal and C Lacroix, Phys. Rev. B 78, 214431 (2008)

    Article  ADS  Google Scholar 

  10. R Yadav, M Pereiro, N Bogdanov, S Nishimoto, A Bergman, O Eriksson, J Brink L Hozoi, Phys. Rev. Mater. 2, 074408 (2018)

    Article  Google Scholar 

  11. K Ueda, J Fujioka, Y Tokura, Phys. Rev. B 93, 245120 (2016)

    Article  ADS  Google Scholar 

  12. D Yanagishima and Y Maeno, J. Phys. Soc. Jpn. 70, 2880 (2001)

    Article  ADS  Google Scholar 

  13. W Witczak-Krempa and Y Kim, Phys. Rev. B 85, 045124 (2012)

    Article  ADS  Google Scholar 

  14. K Matsuhira, M Wakeshima, Y Hinatsu and S Takagi, J. Phys. Soc. Jpn. 80, 094701 (2011)

    Article  ADS  Google Scholar 

  15. K Matsuhira, M Wakeshima, R Nakanishi, T Yamada, A Nakamura, W Kawano, S Takagi and Y Hinatsu, J. Phys. Soc. Jpn. 76, 043706 (2007)

    Article  ADS  Google Scholar 

  16. F F Tafti, J J Ishikawa, A McCollam, S Nakatsuji and S Julian, Phys. Rev. B 85, 205104 (2012)

    Article  ADS  Google Scholar 

  17. P Telang, K Mishra, A K Sood and S Singh, Phys. Rev. B 97, 235118 (2018)

    Article  ADS  Google Scholar 

  18. A Thomas, P Telang, K Mishra, M Cesnek, J Bednarcik, D V S Muthu, S Singh and A K Sood, Phys. Rev. B 105, 75145 (2022)

    Article  ADS  Google Scholar 

  19. P Telang, K Mishra, G Prando, A K Sood and S Singh, Phys. Rev. B 99, 201112 (2019)

    Article  ADS  Google Scholar 

  20. L Rebuffi, J R Plaisier, M Abdellatief, A Lausi and P Scardi, Z. Anorganische Allgemeine Chem. 640, 3100 (2014)

    Article  Google Scholar 

  21. A Hammersley et al, European Synchrotron Radiation Facility Internal Report ESRF97HA02T. 68, pp. 58 (1997)

  22. J Rodriguez-Carvajal and T Roisnel, IUCr Newsletter (1998)

  23. J P Clancy, H Gretarsson, E K Lee, D Tian, J Kim, M H Upton, D Casa, T Gog, Z Islam, B G Jeon, K H Kim, S Desgreniers, Y B Kim, S J Julian and Y J Kim, Phys. Rev. B 94, 24408 (2016)

    Article  ADS  Google Scholar 

  24. M T Vandenborre, E Husson, J P Chatry and D Michel, J. Raman Spectrosc. 14, 63 (1983)

    Article  ADS  Google Scholar 

  25. K Ueda, R Kaneko, A Subedi, M Minola, B J Kim, J Fujioka, Y Tokura and B Keimer, Phys. Rev. B 100, 115157 (2019)

    Article  ADS  Google Scholar 

  26. S Klotz, J-C Chervin, P Munsch and G Le Marchand, J. Phys. D 42, 075413 (2009)

    Article  ADS  Google Scholar 

  27. M Kuiri, S Das, D V S Muthu, A Das and A K Sood, Nanoscale 12, 8371 (2020)

    Article  Google Scholar 

  28. S Ciuchi, D Di Sante, V Dobrosavljević and S Fratini, Npj Quantum Mater. 3, 44 (2018)

    Article  ADS  Google Scholar 

  29. P M Dee, J Coulter, K G Kleiner and S Johnston, Commun. Phys. 3, 145 (2020)

  30. J Bae, I-S Yang, J Lee, T Noh, T Takeda and R Kanno, Vibr. Spectrosc. 42, 284 (2006)

    Article  Google Scholar 

  31. J N Millican, R T Macaluso, S Nakatsuji, Y Machida, Y Maeno and J Y Chan, Mater. Res. Bull. 42, 928 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

AKS thanks the Department of Science and Technology, Government of India, for financial support under the Year of Science Professorship and Nano Mission Council. AT acknowledges support from the Council for Scientific and Industrial Research (CSIR), India. SS would like to thank the Department of Science and Technology (DST), India and Science and Engineering Research Board (SERB), India for financial support under Grant No. EMR/2016/003792. The authors thank B Joseph for his support during high pressure XRD measurements at the Xpress beamline of Elettra Sincrotrone, Trieste. Financial support by the Department of Science and Technology (DST) of the Government of India is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D V S Muthu.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, A., Telang, P., Rout, D. et al. Anomalous pressure dependence of phonon line widths in metallic pyrochlore iridates (Eu\(_{1-x}\)Bi\(_x\))\(_2\)Ir\(_2\)O\(_7\): crossover from incoherent to coherent metal. Pramana - J Phys 97, 138 (2023). https://doi.org/10.1007/s12043-023-02620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02620-2

Keywords

PACS Nos

Navigation