Skip to main content
Log in

Field theoretic formulation of fluid mechanics according to the geometric algebra

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A simple and coherent approach to fluid mechanics is presented using a proper formalism of geometric algebra. The analogy between the equations of electromagnetism and fluid mechanics provides reinterpretation of the equations for two constituent (vorticity and the Lamb vector) fields. Identifying certain quantities as the source fields, the guiding Navier–Stokes (NS) equations of fluid mechanics can be formulated as a set of four geometrically distinct field equations, resembling exactly the Maxwell equations for the constituent magnetic and electric fields. The same set of equations works for all the cases of compressible, incompressible, viscous and the inviscid fluid motions with appropriately modified source terms. The analogy is completed by defining the combined ‘fluidomechanic’ bivector field in space–time algebra and further extended to the fluidic analogue of the Poynting theorem, Poynting vector and Lorentz force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B Osano and P W M Adams, J. Math. Phys. 58, 093101 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. O V Troshkin, Comput. Math. Math. Phys. 33, 1613 (1993)

    MathSciNet  Google Scholar 

  3. H Marmanis, Phys. Fluids 10, 1428 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. T Kambe, Fluid Dyn. Res. 42, 055502 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. A A Martins and M J Pinheiro, Phys. Fluids 21, 097103 (2009)

    Article  ADS  Google Scholar 

  6. R P Feynman, R B Leighton and M Sands, The Feynman lectures on physics II (Addison-Wesley, London, 1964)

    MATH  Google Scholar 

  7. D Sen and D Sen, https://doi.org/10.13140/RG.2.2.31851.75042

  8. D Hestenes, Am. J. Phys. 71, 691 (2003); in Clifford algebras and their applications in mathematical physics edited by J S R Chisholm and A K Commons (Reidel, Dordrecht, 1986)

  9. C Doran and A Lasenby, Geometric algebra for physicists (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  10. J Lasenby, A N Lasenby and C J L Doran, Phil. Trans. R. Soc. London A 358, 21 (2000)

    Article  ADS  Google Scholar 

  11. M Buchanan, Nat. Phys. 7, 442 (2011)

    Article  Google Scholar 

  12. D Sen, Pramana – J. Phys. 96, 165 (2022)

    Article  ADS  Google Scholar 

  13. E D Belançon and S da Silva, Eur. J. Phys. 40, 015801 (2019)

    Article  Google Scholar 

  14. S M Panakkal, R Parameswaran and M J Vedan, Phys. Fluids 32, 087111 (2020)

    Article  ADS  Google Scholar 

  15. L D Landau and E M Lifshitz, Fluid mechanics (Pergamon, Oxford, 1987)

    Google Scholar 

  16. P K Kundu and I M Cohen, Fluid mechanics (Academic Press, New York, 2002)

    Google Scholar 

  17. L Euler, Mém. l’acad. Sci. Berlin (in French) 11, 274 (1757)

    Google Scholar 

  18. R J Thompson and T M Moeller, Phys. Plasmas 19, 010702 (2012); 19, 082116 (2012)

  19. E M C Abreu, J A Neto, A C R Mendes and N Sasaki, Phys. Rev. D 91, 125011 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. S P Sutera and R Skalak, Annu. Rev. Fluid Mech. 25, 1 (1993)

    Article  ADS  Google Scholar 

  21. H Schlichting and K Gersten, Boundary-layer theory (Springer, Berlin, 2017) pp. 101–142

    Book  MATH  Google Scholar 

  22. C Y Wang, Annu. Rev. Fluid Mech. 23, 159 (1991)

    Article  ADS  Google Scholar 

  23. C R Ethier and D A Steinman, Int. J. Numer. Methods Fluids 19, 369 (1994)

    Article  ADS  Google Scholar 

  24. H Grassmann, Math. Ann. 12, 375 (1877)

    Article  MathSciNet  Google Scholar 

  25. W K Clifford, Am. J. Math. 1, 350 (1878)

    Article  Google Scholar 

  26. D Hestenes, Am. J. Phys. 39, 1013 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  27. D Hestenes, in Spinors, twistors, Clifford algebras and quantum deformation edited by Z Oziewicz et al (Kluwer, Dordercht, 1993)

  28. D Hestenes, Spacetime algebra (Gordon and Breach, Philadelphia, 1966)

    MATH  Google Scholar 

  29. D Hestenes, J. Math. Phys. 8, 798 (1967)

    Article  ADS  Google Scholar 

  30. T Kambe, Elementary fluid mechanics (World Scientific, Singapore, 2007)

    Book  MATH  Google Scholar 

  31. A C R Mendes, F Takakura, E M C Abreu, J A Neto, P P Silva and J V Frossad, Ann. Phys. 398, 146 (2018)

    Article  ADS  Google Scholar 

  32. S Demir and M Tanişli, Int. J. Geom. Methods Mod. Phys. 14, 1750075 (2017)

    Article  MathSciNet  Google Scholar 

  33. O Zikanov, Essential computational fluid dynamics (Wiley, New York, 2010)

    MATH  Google Scholar 

  34. J Z Wu, Y Zhou and M Fan, Phys. Fluids 11, 503 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  35. C W Hamman, J C Kleicki and R M Kirby, J. Fluid Mech. 610, 261 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. G Rousseaux, S Seifer, V Steinberg and A Wiebel, Exp. Fluids 42, 291 (2007)

    Article  Google Scholar 

  37. D F Scofield and P Huq, Fluid Dyn. Res. 46, 055513 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  38. M Liu, Phys. Rev. Lett. 70, 3580 (1993)

    Article  ADS  Google Scholar 

  39. P Holland, Proc. R. Soc. London, A 461, 3659 (2005)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Sen.

Appendix

Appendix

Using eqs (5) and (7), the evolution equation of the Lamb vector field \({\textbf{l}}\) can be written as

$$\begin{aligned} \partial _{t} {\textbf{l}}= & {} \partial _{t}({\textbf{v}} \cdot {\textbf{W}}-{\textbf{k}})=\partial _{t}{\textbf{v}} \cdot {\textbf{W}}+{\textbf{v}}\cdot \partial _{t}{\textbf{W}} -\partial _{t}{\textbf{k}}\nonumber \\= & {} (-{\textbf{l}}-\nabla \Phi )\cdot {\textbf{W}} +{\textbf{v}}\cdot (-\nabla \wedge {\textbf{l}})\nonumber \\{} & {} -\eta \{\nabla ^{2}+(3^{-1}\nabla )\nabla \cdot \} \partial _{t} {\textbf{v}}\nonumber \\= & {} -{\textbf{l}}\cdot {\textbf{W}}-(\nabla \Phi ) \cdot {\textbf{W}}-{\textbf{v}}\cdot (\nabla \wedge {\textbf{l}})\nonumber \\{} & {} -\eta \{\nabla ^{2}+(3^{-1}\nabla ) \nabla \cdot \}(-{\textbf{l}}-\nabla \Phi ). \end{aligned}$$
(A.1)

With two vector fields \({\textbf{l}}\) and \({\textbf{v}}\), a known identity of geometric calculus reads as

$$\begin{aligned} \nabla ({\textbf{v}}\cdot {\textbf{l}})&=({\textbf{v}}\cdot \nabla ) {\textbf{l}}{+}({\textbf{l}}\cdot \nabla ) {\textbf{v}} {+}(\nabla \wedge {\textbf{v}})\cdot {\textbf{l}} {+}(\nabla \wedge {\textbf{l}})\cdot {\textbf{v}}\nonumber \\&\Rightarrow (\nabla \wedge {\textbf{l}}) \cdot {\textbf{v}} \equiv -{\textbf{v}} \cdot (\nabla \wedge {\textbf{l}})=-\nabla ({\textbf{v}} \cdot {\textbf{k}})\nonumber \\&\quad -({\textbf{v}}\cdot \nabla ){\textbf{l}} -({\textbf{l}} \cdot \nabla ){\textbf{v}}+{\textbf{l}}\cdot {\textbf{W}} \end{aligned}$$
(A.2)

since \({\textbf{v}}\cdot ({\textbf{v}}\cdot {\textbf{W}})\) vanishes identically. Now, substitution of (A.2) in (A.1) gives

$$\begin{aligned} \partial _{t} {\textbf{l}}= & {} -\nabla ({\textbf{v}}\cdot {\textbf{k}}) -({\textbf{v}}\cdot \nabla ){\textbf{l}}-({\textbf{l}}\cdot \nabla ) {\textbf{v}}+{\textbf{W}}\cdot \nabla \Phi \\{} & {} +\eta \{\nabla ^{2} +(3^{-1}\nabla )\nabla \cdot \} ({\textbf{l}}+\nabla \Phi ). \end{aligned}$$

Moreover, from the following identity of GC:

$$\begin{aligned} \nabla \cdot ({\textbf{v}} \wedge {\textbf{l}}){} & {} ={\textbf{l}}(\nabla \cdot {\textbf{v}})+({\textbf{v}} \cdot \nabla ){\textbf{l}}-{\textbf{v}}(\nabla \cdot {\textbf{l}}) -({\textbf{l}}\cdot \nabla ){\textbf{v}}\nonumber \\{} & {} \Rightarrow ({\textbf{v}} \cdot \nabla ){\textbf{l}}=\nabla \cdot ({\textbf{v}} \wedge {\textbf{l}}) -{\textbf{l}}(\nabla \cdot {\textbf{v}})\nonumber \\{} & {} \qquad +{\textbf{v}} (\nabla \cdot {\textbf{l}})+({\textbf{l}}\cdot \nabla ){\textbf{v}} \end{aligned}$$

and we can write:

$$\begin{aligned} \partial _{t} {\textbf{l}}= & {} -\nabla ({\textbf{v}}\cdot {\textbf{k}}) -\nabla \cdot ({\textbf{v}} \wedge {\textbf{l}})+{\textbf{l}}(\nabla \cdot {\textbf{v}}) -{\textbf{v}}(\nabla \cdot {\textbf{l}})\nonumber \\{} & {} -2({\textbf{l}} \cdot \nabla ){\textbf{v}}+{\textbf{W}} \cdot \nabla \Phi \nonumber \\{} & {} +\eta \{\nabla ^{2}+(3^{-1}\nabla )\nabla \cdot \} ({\textbf{l}}+\nabla \Phi ). \end{aligned}$$
(A.3)

Expressing the second term on the right-hand side of the above equation as

$$\begin{aligned}{} & {} -\nabla \cdot ({\textbf{v}} \wedge ({\textbf{v}}\cdot {\textbf{W}})) +\nabla \cdot ({\textbf{v}} \wedge {\textbf{k}})\\{} & {} \quad =-\nabla \cdot \{v^{2}{\textbf{W}}-({\textbf{v}} \wedge {\textbf{W}}) \cdot {\textbf{v}}\}+\nabla \cdot ({\textbf{v}} \wedge {\textbf{k}})\\{} & {} \quad =-\nabla v^{2}\cdot {\textbf{W}}-v^{2}\nabla \cdot {\textbf{W}} +\{\nabla \cdot ({\textbf{v}} \wedge {\textbf{W}})\}\cdot {\textbf{v}}\\{} & {} \qquad +({\textbf{v}} \wedge {\textbf{W}}):\nabla \wedge {\textbf{v}}+\nabla \cdot ({\textbf{v}} \wedge {\textbf{k}}), \end{aligned}$$

eq. (A.3) can be written as

$$\begin{aligned} \partial _{t} {\textbf{l}}= & {} -\nabla ({\textbf{v}}\cdot {\textbf{k}})-v^{2} \,\nabla \cdot {\textbf{W}}+ \{\nabla \cdot ({\textbf{v}} \wedge {\textbf{W}})\}\cdot {\textbf{v}}\\{} & {} +({\textbf{v}} \wedge {\textbf{W}}): {\textbf{W}} +\nabla \cdot ({\textbf{v}} \wedge {\textbf{k}})+{\textbf{l}} (\nabla \cdot {\textbf{v}})-{\textbf{v}} (\nabla \cdot {\textbf{l}})\\{} & {} -2\,({\textbf{l}}\cdot \nabla ){\textbf{v}}+{\textbf{W}} \cdot \nabla (\Phi +v^{2})+\eta \nabla ^{2} ({\textbf{l}}+\nabla \Phi )\\{} & {} +3^{-1} \eta \nabla \{\nabla \cdot ({\textbf{l}}+\nabla \Phi )\}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, D. Field theoretic formulation of fluid mechanics according to the geometric algebra. Pramana - J Phys 97, 132 (2023). https://doi.org/10.1007/s12043-023-02617-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02617-x

Keywords

PACS Nos

Navigation