Skip to main content
Log in

Implementation of hybrid circuits (analog–digital): Delay implementation by the microcontroller

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Delayed dynamic systems present very rich behaviours and play a primordial role in technical and industrial applications, such as cryptography and data security in telecommunications. In this work, the design and realisation of hybrid analog–digital circuits are done based on hybrid circuits. The digital part of this hybrid circuit is essentially constituted by the microcontroller, which makes it possible to create the delay in the systems considered and the remainder of the circuit is constituted by analog components (passive and active). The communication between the analog and the digital part is effective through the digital-to-analog converter (DAC) and analog-to-digital converter (ADC). Implementation of this new hybrid circuit makes it possible to reproduce the behaviours obtained by the digital simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. M T Khlebodarova, V V Kogai, I S Fadeev and A V Likhoshvai, J. Bioinform. Comput. Biol, 15(02), 1650042 (2017), https://doi.org/10.1142/S0219720016500426

    Article  Google Scholar 

  2. V P Kuptsov and P S Kuznetsov, J. Nonlinear Sci. 30(11), 113113 (2020), https://doi.org/10.1063/5.0022645

    Article  Google Scholar 

  3. A Shvets and A Makaseyev, Appl. Math. Nonlinear Sci. 4(1), 1 (2019), https://doi.org/10.2478/AMNS.2019.1.00001

    Article  Google Scholar 

  4. U G Ngouabo, E T Metioguim and S Noubissie, Int. J. Electron. Lett. 8(3), 285 (2020), https://doi.org/10.1080/21681724.2019.1600727

    Article  Google Scholar 

  5. U G Ngouabo, P R Nwagoum Tuwa, S Noubissie and P Woafo, J. Vib. Control 27(1–2), 220 (2021), https://doi.org/10.1177/1077546320925628

    Article  MathSciNet  Google Scholar 

  6. X Lv, X Liao and B Yang, Nonlinear Dyn. 94(1), 325 (2018), https://doi.org/10.1007/s11071-018-4361-4

    Article  Google Scholar 

  7. Y Wang, S Xiang, B Wang, X Cao, A Wen and Y Hao, Opt. Express 27(6), 8446 (2019), https://doi.org/10.1364/OE.27.008446

    Article  ADS  Google Scholar 

  8. L Wang, D Wang, H Gao, Y Guo, Y Wang, Y Hong and A Wang, IEEE J. Quantum Electron 56(1), 1 (2019), https://doi.org/10.1109/JQE.2019.2950943

    Article  Google Scholar 

  9. S Liu, N Jiang, A Zhao, Y Zhang and K Qiu, Appl. Opt. 59(22), 6788 (2020), https://doi.org/10.1364/AO.400262

    Article  ADS  Google Scholar 

  10. A Buscarino, C Famoso, L Fortuna and M Frasca, Int. J. Bifurc. Chaos 26(10), 1650161 (2016), https://doi.org/10.1142/S0218127416501613

    Article  Google Scholar 

  11. T Banerjee, D Biswas and C B Sarkar, Nonlinear Dyn. 70, 721 (2012), https://doi.org/10.1007/s11071-012-0490-3

    Article  Google Scholar 

  12. D Biswas and T Banerjee, Nonlinear Dyn. 83(4), 2331 (2016), https://doi.org/10.1007/s11071-015-2484-4

    Article  Google Scholar 

  13. G Ablay, Nonlinear Dyn. 81(4), 1795 (2015), https://doi.org/10.1007/s11071-015-2107-0

    Article  MathSciNet  Google Scholar 

  14. A Namajūnas, K Pyragas and A Tamaševičius, Phys. Lett A 204(3–4), 255 (1995), https://doi.org/10.1016/0375-9601(95)00480-Q

    Article  ADS  Google Scholar 

  15. H Lu, Y He and Z He, IEEE Trans. Circuits Syst. I 45(2), 178 (1998), https://doi.org/10.1109/81.661687

    Article  Google Scholar 

  16. A Buscarino, L Fortuna, M Frasca, and G Sciuto, IEEE Trans. Circuits Syst. I 58(8), 1888 (2011), https://doi.org/10.1109/TCSI.2011.2107190

    Article  MathSciNet  Google Scholar 

  17. V T Pham, A Buscarino, L Fortuna and M Frasca, Int. J. Bifurc. Chaos 23(04), 1350073 (2013), https://doi.org/10.1142/S0218127413500739

    Article  Google Scholar 

  18. D Biswas, B Karmakar and T Banerjee, Nonlinear Dyn. 89, 1783 (2017), https://doi.org/10.1007/s11071-017-3548-4

    Article  Google Scholar 

  19. R Chiu, D López-Mancilla, E C Castañeda, O Orozco-López, E Villafaña-Rauda and R Sevilla-Escoboza, Chaos Solitons Fractals 119, 255 (2019), https://doi.org/10.1016/j.chaos.2018.12.029

    Article  ADS  Google Scholar 

  20. R Chiu, M Mora-Gonzalez and D Lopez-Mancilla, IERI Proc. 4, 247 (2013), https://doi.org/10.1016/j.ieri.2013.11.035

    Article  Google Scholar 

  21. M A Murillo-Escobar, C Cruz-Hernández, F Abundiz-Pérez and M R López-Gutiérrez, Microprocess. Microsyst. 45, 297 (2016), https://doi.org/10.1016/j.micpro.2016.06.004

    Article  Google Scholar 

  22. K Rajagopal, A Akgul, S Jafari, A Karthikeyan and I Koyuncu, Chaos Solitons Fractals 103, 476 (2017), https://doi.org/10.1016/j.chaos.2017.07.007

    Article  ADS  MathSciNet  Google Scholar 

  23. S Vaidyanathan, A T Azar, K Rajagopal, A Sambas, S Kacar and U Cavusoglu, Int. J. Simul. Process Model. 13(3), 281 (2018), https://doi.org/10.1504/IJSPM.2018.093113

    Article  Google Scholar 

  24. T M Eugenie, N U Gael, N Samuel, F H Bertrand and W Paul, Commun. Nonlinear Sci. Numer. Simul. 62, 454 (2018), https://doi.org/10.1016/j.cnsns.2018.01.015

    Article  MathSciNet  Google Scholar 

  25. N U Gaël, N Samuel, F H Bertrand and W Paul, Pramana – J. Phys94, 12 (2020), https://doi.org/10.1007/s12043-019-1867-3

    Article  Google Scholar 

  26. M K Mandal and A K Das, Nanoelectronics, circuits and communication systems. Lecture notes in electrical engineering (Springer, Singapore, 2019)

    Google Scholar 

  27. Q Lai, P D Kamdem Kuate, H Pei and H Fotsin, Complexity 2020, 8175639 (2020), https://doi.org/10.1155/2020/8175639

    Article  Google Scholar 

  28. K S Tang, K F Man, G Q Zhong and G Chen, IEEE Trans. Circuits Syst. I 48(5), 686 (2001), https://doi.org/10.1109/81.922468

    Article  Google Scholar 

  29. M Lakshmanan and D V Senthilkumar, Dynamics of nonlinear time-delay systems (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Gaël Ngouabo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngouabo, U.G., Noubissie, S. Implementation of hybrid circuits (analog–digital): Delay implementation by the microcontroller. Pramana - J Phys 97, 129 (2023). https://doi.org/10.1007/s12043-023-02610-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02610-4

Keywords

PACS Nos

Navigation