Skip to main content
Log in

Dynamics and asymptotic behaviour of directed modularity in heterogeneous networks

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In various real-world networks, the set of nodes is partitioned in groups or types forming densely connected clusters commonly called ‘communities’. Several methods have been developed to find community structure in networks; one of them is based on modularity, a measure that represents the fraction of edges between nodes of the same type minus the expected fraction of such edges if they are established by a random process. Our work introduces a dynamic generation model of directed heterogeneous networks in which the set of nodes is partitioned in two groups. Networks based on our model grow by the addition of new nodes and the creation of new edges at each instant of time according to the combination of two mechanisms: (i) affinity-weighted preferential attachment and (ii) reciprocity response. We characterise the dynamics and limit values for the sum of the in- and out-degree of the nodes of the network which help us to determine the tail of the degree distributions (in and out) for each type of nodes. We show that both distributions follow a power law with equal scaling exponent. Using the limit values associated with the degree properties of our networks, we derive the dynamics and the asymptotic behaviour of the directed network modularity and establish conditions to guarantee the occurrence of communities according to the type of nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M Newman, D Watts and S Strogatz, Proc. Natl Acad. Sci. 99, 2566 (2002)

    Article  ADS  Google Scholar 

  2. A-L Barabási and R Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. G Bianconi and A-L Barabási, Europhys. Lett. 54, 436 (2001)

    Article  ADS  Google Scholar 

  4. K Guerrero and J Finke, Proc. Conf. Decision Control 2318 (2017)

  5. K Growiec, J Growiec and B Kamiński, Social Networks 55, 31 (2018)

    Article  Google Scholar 

  6. P Moriano and J Finke, Europhys. Lett. 99, 18002 (2012)

    Article  ADS  Google Scholar 

  7. H Simon, Biometrika 42, 425 (1955)

    Article  MathSciNet  Google Scholar 

  8. D-S Lee, K-I Goh, B Kahng and D Kim, Pramana – J. Phys. 64, 1149 (2005)

    Google Scholar 

  9. X Zhang and Q Zhao, Pramana – J. Phys. 74, 469 (2010)

    Google Scholar 

  10. M Henzinger and S Lawrence, Proc. Natl Acad. Sci. 101, 5186 (2004)

    Article  ADS  Google Scholar 

  11. F Fabbri, F Bonchi, L Boratto and C Castillo, Proc. Int. AAAI Conf. Web Social Media 14, 165 (2020)

    Article  Google Scholar 

  12. F Karimi, M Génois, C Wagner, P Singer and M Strohmaier, Sci. Rep. 8, 1 (2018)

    Google Scholar 

  13. C Avin, H Daltrophe, B Keller, Z Lotker, C Mathieu, P Peleg and Y-A Pignolet, Physica A 555, 124723 (2020)

    Article  Google Scholar 

  14. M McPherson, L Smith-Lovin and J Cook, Ann. Rev. Sociol. 27, 415 (2001)

    Article  Google Scholar 

  15. K Kim, J Altmann, L Smith-Lovin and J Cook, Commun. Nonlinear Sci. Numer. Simulat. 44, 482 (2017)

    Article  ADS  Google Scholar 

  16. M Grandjean, Cogent Arts Humanities 3, 1171458 (2016)

    Article  Google Scholar 

  17. A Traud, P Mucha and M Porter, Physica A 391, 4165 (2012)

    Article  ADS  Google Scholar 

  18. Y Liu, B Wei, Y Du, F Xiao, Y Deng, P Mucha and M Porter, Chaos Solitons Fractals 86, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. D Ruiz, J Campos and J Finke, J. Stat. Phys. 181, 673 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. V Ciotti, M Bonaventura, V Nicosia, P Panzarasa and V Latora, EPJ Data Sci. 181, 673 (2020)

    Google Scholar 

  21. F Riquelme and P González-Cantergiani, Inform. Process. Manage. 52, 949 (2016)

    Google Scholar 

  22. A Clauset, M Newman and C Moore, Phys. Rev. E 70, 066111 (2004)

    Article  ADS  Google Scholar 

  23. S Fortunato, Phys. Rep. 486, 75 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. N Dugué and A Pérez, Directed Louvain: Maximizing modularity in directed networks, Technical Report (Université d’Orléans, 2015)

  25. E Leicht and M Newman, Phys. Rev. Lett. 100, 118703 (2008)

    Article  ADS  Google Scholar 

  26. N Dugué and A Pérez, Physica A 603, 127798 (2022)

    Article  Google Scholar 

  27. E Lee, F Karimi, C Wagner, H-H Jo, M Strohmaier and M Galesic, Nature Human Behaviour 10, 1078 (2019)

    Article  Google Scholar 

  28. D Ruiz, Int. J. Appl. Math. 34, 1187 (2021)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Universidad del Cauca, under research project VRI ID 5681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murcia, A., Pérez, N. & Ruiz, D. Dynamics and asymptotic behaviour of directed modularity in heterogeneous networks. Pramana - J Phys 97, 142 (2023). https://doi.org/10.1007/s12043-023-02608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02608-y

Keywords

PACS Nos

Navigation